Air interface evolution towards 5G

Presenter: Klaus I. Pedersen, Nokia Networks
5G will enable very diverse use cases with extreme range of requirements

- >10 Gbps peak data rates
- Massive Broadband
- 100 Mbps whenever needed
- 10-100 x more devices
- M2M ultra low cost
- 10 years on battery
- Massive machine type communication
- Ultra reliability
- <1 ms latency

- 10 000 x more traffic
- Capacity for everyone
- 3D video / 4K screens
- Work in the cloud
- VR gaming
- Industry 4.0
- Autonomous driving
- Remote control of robot
- Mission critical broadcast
- Sensor NW

- # of Devices | Cost | Power
- Critical machine type communication
- (Low power) Wide area
- Crowd
- Ultra-dense
- Outdoor

- A trillion of devices with different needs
- GB transferred in an instant
- Mission-critical wireless control and automation
5G is to enable above 6 GHz & optimize below 6 GHz access
- 5G to be initially deployed below 6 GHz due to band availability

WRC

- 2015: Some additional bands <6GHz to be identified – in time for 2020 deployments
- 2019: Expected to identify >6GHz bands – too late for 2020 deployments

Bands

- 3…6 GHz unpaired band is candidate for first 5G deployments.
- Ready for > 6 GHz unpaired bands
- Easily extensible to paired bands, also under 3 GHz

- 100-200 MHz carrier bandwidth supported
- High degree of spectrum flexibility required (fragmented spectrum)
- Carrier aggregation / dual connectivity, also with LTE bands
Lean Carrier Design

Lean carrier = no unnecessary transmission of wideband control data.

- Less inter-cell interference
- Lower BTS power consumption
- Lower UE and IoT device power consumption with narrowband AD converter

Transmission activity in empty cell

<table>
<thead>
<tr>
<th></th>
<th>LTE</th>
<th>5G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current solution</td>
<td>Continuous transmission of common reference signals</td>
<td>No unnecessary transmissions in empty cell</td>
</tr>
</tbody>
</table>

© Nokia 2015
Flexible Frame Structure

Solutions

- Flexible frame size
- Flexible control channel
- Beamforming optimized
- Flexible TDD asymmetry

Benefits

- Latency <1 ms
- Efficient mux of users with diverse requirements.
- More efficient interference management
- Higher beamforming gain

Flexible trade-offs between enhanced spectral efficiency, low latency and increased reliability.

Practical LTE latency 10-20 ms

© Nokia 2015
Example of flexibility in terms of variable TTIs

Fundamentals:
- Short RTT calls for a short TTI size.
- The relative control overhead is larger for short TTI sizes.
- Longer TTI allows higher TBS, better time diversity, efficient FEC.

Low cost MTC use case:
- Scheduled on moderate BW with longer TTI size
- Low BW and long TTI is attractive from cost and coverage p.o.v.

MCC use case:
- Short TTI size to meet latency requirements.
- TTI size adapted according to latency constraints.

MBB use case:
Start TCP sessions with short TTI size to quickly overcome the slow-start phase, followed by using medium size TTI to minimize control overhead.

Broadcast use case:
Scheduled with long TTI size to maximize FEC gains from time-diversity.

Observation: A flexible frame structure with dynamic adjustment of TTI size per user is one possibility.
Waveforms – Flexibility for Different Services

<table>
<thead>
<tr>
<th>Use case</th>
<th>Optimization target</th>
<th>Waveform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile broadband synchronous transmission</td>
<td>Spectral efficiency</td>
<td>Similar solution as in LTE like OFDMA and SC-FDMA</td>
</tr>
<tr>
<td>TDD beamforming optimization</td>
<td>Same waveform in uplink and downlink for beamforming</td>
<td>Uplink and downlink harmonization</td>
</tr>
<tr>
<td>Base station power efficiency</td>
<td>Low RF requirements (peak-to-average-power)</td>
<td>Single carrier solution for high bands in downlink (Zero Tail is similar to single carrier)</td>
</tr>
<tr>
<td>Small packet asynchronous transmission</td>
<td>Low overhead for small packets</td>
<td>Other solution could be considered</td>
</tr>
</tbody>
</table>

© Nokia 2015
Overview of New Waveform Options

<table>
<thead>
<tr>
<th>OFDM</th>
<th>SC-FDMA</th>
<th>LTE solution</th>
<th>New waveforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Low transceiver complexity</td>
<td>- Low amplifier requirements</td>
<td>• Downlink OFDM</td>
<td>• Lower emissions</td>
</tr>
<tr>
<td>- Simple MIMO</td>
<td>- Advanced receiver required</td>
<td>• Uplink SC-FDMA</td>
<td>• Less Cyclic Prefix overhead</td>
</tr>
<tr>
<td>- Frequency domain</td>
<td>- Limited frequency scheduling</td>
<td>• OFDM fine for synchronous transmission also in 5G</td>
<td>• Some gain for asynchronous transmission like IoT</td>
</tr>
<tr>
<td>scheduling</td>
<td></td>
<td></td>
<td>• Flexibility for different subcarrier spacings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Good to have same solution in uplink and downlink</td>
</tr>
<tr>
<td>ZT-DFT-OFDM (Zero Tail)</td>
<td>FBMC (Filter Bank Multicarrier)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Lower out of band</td>
<td>- Lower out of band emissions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>emissions</td>
<td>- Similar performance as SC-FDMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- No Cyclic prefix overhead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- MIMO extension difficult</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFDM (Generalized</td>
<td>UFMC (Universal Filtered)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Lower out of band</td>
<td>- Lower out of band emissions</td>
<td></td>
<td>• Lower out of band emissions</td>
</tr>
<tr>
<td>emissions</td>
<td>- Low Cyclic prefix overhead</td>
<td></td>
<td>• High receiver complexity</td>
</tr>
<tr>
<td></td>
<td>- High receiver complexity</td>
<td></td>
<td>• Robust to frequency offset</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Nokia 2015
UE Agnostic Massive MIMO and Beamforming

UE agnostic MIMO
Network capacity can be upgraded with base station MIMO without new 3GPP definitions and without new devices. This solution applies for any frequency bands.

Massive MIMO
Large number of antenna ports (>32) can be utilized at high frequency bands to boost the link performance and minimize interference. Grid-of-beams (GoB). Hybrid eNB antenna architectures.
Small Packet Efficiency – Massive MTC access

Solutions

• Contention based transmission
• Coding scheme enhancements
• Session on demand

Benefits

• Lower synchronization requirements
• Faster decoding for small packets
• Minimized signalling overhead

- LTE: more than 10 radio signalling messages required for call setup, and additional signalling for call release
- LTE: uplink synchronization, capacity request and resource allocation required
- Potential for improvements!
Mission Critical Communication (MCC) – Ultra Reliability

Ultra reliable communication:
Successfull transfer of a payload of B bits within a time of T seconds with high probability (e.g. 99.999%).

Possible enablers (examples):
- Diversity and redundancy
- Short TTI sizes, robust control CH
- Efficient error correction coding
- Active interference management
- Cell densification

SINR statistics for different MIMO options:

- 1×1
- 2×2
- 4×4

Cumulative Distribution

Instantaneous SINR [dB]

~40 dB
Example of SINR Outage Performance

Results for a traditional three-sector macro scenario

SINR target at 0 dB is a reasonable value for reliable low data rate communication.

Reaching the 0 dB SINR target with high reliability (10^-5 outage) requires both high order microscopically macroscopic and macroscopic diversity.

Interference cancellation and/or resource partitioning helps as well.
Multi-Node and Multi-Technology Aggregation

5G can be aggregated together with LTE both from different sites and from multiple bands

Multi-site aggregation

• Smooth 5G introduction
• Simpler refarming
• Higher user data rates

Multi-band aggregation
A symbiotic integration of novel and existing access technologies
Nokia 5G system vision

Scalable service experience anytime and everywhere

<table>
<thead>
<tr>
<th>5G</th>
<th>Wide area and Ultra-Dense deployments</th>
</tr>
</thead>
</table>
| Zero latency and GB experience – when and where it matters

<table>
<thead>
<tr>
<th>4G</th>
<th>Massive mobile data and M2M</th>
</tr>
</thead>
<tbody>
<tr>
<td>3G</td>
<td>Voice, video and data</td>
</tr>
<tr>
<td>2G</td>
<td>High quality voice and M2M</td>
</tr>
<tr>
<td>Wi-Fi</td>
<td>Best effort data</td>
</tr>
<tr>
<td>Fixed access</td>
<td></td>
</tr>
</tbody>
</table>
5G for people and things
New performance levels 2020+

“It is dangerous to put limits on wireless” (1932)
-Gugliemo Marconi