

5G New Radio Design

Expanding the human possibilities of technology to make our lives better

Fall VTC-2017, Panel

September 25th, 2017

Dr. Amitabha Ghosh Head of Small Cell Research, Nokia Fellow, IEEE Fellow Nokia Bell Labs

3GPP 5G NR agreed timeline: No changes since last time

3GPP Release 15 work and study items: What else from January onwards?

Additional New Work Items and Studies targeting for Rel-16 are still expected to be approved in December 2017 3GPP RAN plenary

4

RAN level discussion on scenario etc. Ongoing

Physical Channels & Physical Signals

PDSCH DL shared channel

PBCH Broadcast channel

PDCCH DL control channel

DL Physical Signals

Demodulation Ref (DMRS) Phase-tracking Ref (PT-RS) Ch State Inf Ref (CSI-RS) Primary Sync (PSS) Secondary Sync (SSS)

User Equipment

roca A

GNodeB

PUSCH UL shared channel

PUCCH UL control channel

PRACH

Random access channel

UL Physical Signals

Demodulation Ref (DMRS) Phase-tracking Ref (PTRS) Sounding Ref (SRS)

5G NR Numerology : Overview

Numerologies with normal CP (subframe = 1msec)

	Slot Configuration 0					
Subcarrier spacing [kHz]	15	30	60	120	240*	480**
Symbol duration [us]	66.7	33.3	16.6	8.33	4.17	2.08
Nominal CP [us]	4.7	2.41	1.205	0.60	0.30	0.15
Nominal max BW [MHz]	49.5	99	198	396	397.4	397.4
Max FFT size	4096	4096	4096	4096	2048	1024
Min scheduling interval (symbols)	14	14	14	14	14	14
Min scheduling interval (slots)	1	1	1	1	1	1
Min scheduling interval (ms)	1.0	0.5	0.25	0.125	0.0625	0.0312

*SS Block only **Not supported

Numerologies with extended CP (subframe = 1msec)

Subcarrier spacing [kHz]	Symbol Duration[us]	Ext CP[us]	Nom max BW	FFT Size	Sched Interval (sym)	Sched Interval (slot)	Sched Interval (ms)
60	16.6	4.2	198	4096	12	1	0.25

Frame Structure (120 KHz SC) & Modulation

- 80 slots/10 ms frame
- 14 OFDM symbols/slot
- 24-275 PRBs/slot
- 12 subcarriers/PRB
- Occupied BW
 - Minm = 24x12x120 = 34.56 MHz
 - Maxm = 275x12x120 = 396 MHz

Modulation scheme	UL /DL
π/2-BPSK	UL only, In combination with transform precoding only
QPSK	UL/DL
16QAM	UL/DL
64QAM	UL/DL
256QAM	UL/DL

Downlink Channels & Signals PDSCH and PDCCH

	PDSCH (5G)	PDSCH (LTE)	PDCCH (5G)	PDCCH (LTE)
Purpose	Transmit DL Data	Transmit DL Data	Transmit DL Control	Transmit DL Control
Waveform	OFDM	OFDM	OFDM	OFDM
Bandwidth	Numerology Dependent	Max: 1.4 / 3 / 5 / 10 / 15 / 20 MHz	Flexible, Numerology Dependent	Fixed: 1.4 / 3 / 5 / 10 / 15 / 20 MHz
Reference signals	UE-specific	Cell specific or UE-specific (Release 10)		
Phase noise compensation	Yes	No		
Modulation	Up to 256QAM	Up to 256QAM	QPSK	QPSK
Coding scheme	LDPC	Turbo	Polar	TBCC

Uplink Channels & Signals

PUSCH – Uplink shared channel

	PUSCH (5G)	PUSCH (LTE)
Purpose	Used to transmit uplink data and control information	Used to transmit uplink data and control information
Waveform	OFDM/SC-FDMA (Optional)	SC-FDMA
Bandwidth	See numerology	Max: 1.4 / 3 / 5 / 10 / 15 / 20 MHz
Phase noise compensation	Yes	No
Modulation	Up to 256 QAM & $\pi/2$ –BPSK	Up to 64QAM
Coding scheme	LDPC	Turbo

MIMO in 3GPP

Release 8	Release 9	Release 10	Release 11
 4x4MIMO 4x2MIMO 8RX uplink Uplink CRAN 	• 8TX TM8	• 8TX TM9	 Downlink CoMP (TM10)

Release 12	Release 13	Release 14	Release 15+
 Downlink eCoMP New 4TX codebook 	 Massive MIMO 16TX 	 Massive MIMO 32TX 	 5G massive MIMO 64TX+

Massive MIMO in 3GPP New Radio – Beam Based Air Interface

Beam switching

Beam Management

- Acquisition and maintenance of a set of beams for TX and RX at base and UE
- CoMP is built in

12

© Nokia 2017

Beam Management and CSI

Downlink Codebook Overview

Type I Codebooks:

- Standard resolution CSI feedback
- Single panel and multi-panel

Type II Codebooks:

- High resolution CSI feedback
 targeting MU-MIMO
- Non-precoded and precoded CSI-RS
 Designed for cross-polar antennas

Supported Antenna Ports

	Туре І		Type II		
Ports	Single Panel	Multi- Panel	Non- precoded CSI-RS	Precoded CSI-RS	
2	\checkmark				
4	\checkmark		\checkmark	\checkmark	
8	\checkmark	\checkmark	\checkmark	\checkmark	
12	\checkmark		\checkmark	\checkmark	
16	\checkmark	\checkmark	\checkmark	\checkmark	
32	\checkmark	\checkmark	\checkmark	\checkmark	

CSI Feedback DL Codebook Overhead Example

Туре І		Type II			
Single Panel	Multi-Panel	Non-precoded		Pre	coded
L=2: 9/1	Mode 1: 10/1	L=2:	31/12-24	L=2:	25/12-24
L=4: 7/3	Mode 2: 10/3	L=4:	59/28-48	L=4:	51/28-48

M/N indicates M wideband bits and N bits per subband (Type II entries indicate the range of possible bits per SB)

- L Number of beams configured in the codebook
- 16 ports, 2 layers assumed
 - Single panel and non-precoded: N₁=4, N₂=2
 - Multi-panel: 2 panels, N₁=2, N₂=2
 - Precoded: Selection sampling factor (d) = 1

14

5G vs. 4G Capacity per Cell at 2GHz – 16x4 MIMO

significant gains over LTE Codebooks

Mean UE throughput: 26%

2GHz

20MHz

7.73 bps/Hz *

155 Mbps cell

throughput

NR $2GH_{7}$ 750m ISD 16x4 qNB = (1,8,2)

> * Includes 20% improvement due to lean carrier in NR

ITE 2GHz 750m ISD 16x4 eNB=(1,8,2)

Cell edge: 25%

Early 5G use case: Extreme broadband to the home (mmWave)

VRAN & EPC

Tasks Ahead?

Prioritization of essential functionalities for NSA completion

Self Evaluation for IMT-2020 Submission

NR numerologies for sub 6GHz & mmWave

Channel bandwidths for various NR bands ?

Massive MIMO : Type of Codebooks supported?

UE capabilities

mmWave : IAB/Deployments, ESA

