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Abstract—Millimeter-Wave radar has been widely applied in
the field of autonomous driving due to an excellent performance
under complex weather conditions. However, in practical roadside
scenarios, the challenge of sparse point clouds leading to clustering
difficulties and the issue of large vehicle point clouds dispersing,
resulting in fragmentation, currently hampers the practical ap-
plication of radar sensors. We propose an adaptive point cloud
clustering algorithm based on DBSCAN. First, we propose an
improved DBSCAN clustering algorithm based on distance and
speed thresholds, which enhances the differentiation of point
clouds between different vehicles, and an adaptive ellipse gate
strategy to solve the large vehicle point clouds fragmentation
problem. Then, a secondary clustering algorithm based on azimuth
is exploited, effectively addressing the issues of large vehicle
fragmentation and anomalous speed values. Practical roadside
experimental results demonstrate that our proposed algorithm
significantly outperforms traditional algorithms, showing consid-
erable potential in practical applications.

Index Terms—Millimeter-Wave radar, roadside, MmWave,
point cloud, clustering, DBSCAN, wave gate

I. INTRODUCTION

Millimeter-Wave (MmWave) radar offers unique advantages
in challenging weather conditions, low-light environments,
and long-range detection, ensuring vehicular safety under di-
verse meteorological and illumination circumstances. There-
fore, MmWave radar, known for its high resolution and compact
design, is widely used in vehicles. In recent years, roadside
MmWave radar becomes more and more popular because it
can boast a broader field of vision, and extended detection
range as a complement of automotive radar [1], [2]. However,
the point cloud data of roadside MmWave radar exhibit sparse
characteristics and is prone to be effected by traffic velocity,
detection distance, weather conditions, and other environmental
interferences, which brings challenges in point cloud clustering,
necessitating specialized algorithms and methodologies for ef-
fective processing.

The DBSCAN (Density-Based Spatial Clustering of Ap-
plications with Noise) algorithm [3] is a popular clustering
method for analyzing MmWave radar data, based on which
a number of adaptations aimed at improving its application in
traffic environment vehicle clustering have been proposed [4]–
[11]. A robust, adaptive radar point cloud clustering algorithm,
termed Radar Elliptic Density-Based Spatial Clustering of
Applications with Noise (REDBSCAN), was introduced by

Fig. 1: Scenario of roadside MmWave radar deployment.

Zhang et al. [4]. A radar point cloud clustering algorithm
with adaptive clustering parameters, named Leaf-DBSCAN,
was proposed by Sheikh et al. [5]. The algorithm modifies
the clustering strategy to reduce frequent distance queries
between target locations formed during clustering, and adapts
the clustering parameters according to the spatial distribution of
points. ADBSCAN, an improvement upon DBSCAN’s handling
of uneven LiDAR point cloud distributions with a distance-
adaptive clustering radius, was introduced by Jin et al. [6].
An algorithm for dynamic environments such as autonomous
driving, which auto-estimates DBSCAN parameters to achieve
results comparable to the original without manual adjustments,
was created by Mohammad et al. [7]. A method for boundary
detection and plane segmentation in 3D point clouds, which
enhances DBSCAN for effective plane fitting, was proposed by
Chen et al. [9]. Additionally, Campello etal. [10] introduced
HDBSCAN, a hierarchical density-based clustering algorithm
that simplifies the merging process through a cluster candidate
tree, suitable for various applications.

However, in the practical context of road environments,
clustering point clouds presents significant challenges. To ad-
dress the issues of large vehicle fragmentation and point cloud
sparsity encountered in real-world road scenarios, we propose
an adaptive point cloud clustering algorithm based on DBSCAN
clustering, utilizing multidimensional information derived from
point clouds. Our algorithm employs an improved DBSCAN
based on distance and speed, which expands the differentiation
of point clouds between different vehicles. We proposes an
adaptive ellipse gate strategy for better alignment with vehicle
point cloud shapes. In order to improve the accuracy of the
clustering and to reduce the probability of fragmentation, we
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also add an inter-cluster merging strategy after the clustering
algorithm.

II. ROADSIDE MMWAVE RADAR CLUSTERING

A. The Role of Clustering in Roadside Radar System

The roadside MmWave radar system is an important com-
ponent in achieving intelligent transport, as shown in Figure
1. The clustering algorithm plays a crucial role in the ex-
tended point cloud target segmentation and tracking process
of MmWave radar data processing. The clustering algorithm
precisely segments point cloud clusters of different vehicles by
processing MmWave radar detection vehicle point cloud data,
so as to accurately distinguish the vehicle data in the detection
area and improve the tracking accuracy and system detection
capability. Accurately segmenting different vehicle point cloud
information on complex traffic roads poses a challenge for the
clustering algorithm of roadside MmWave radar.

B. Algorithm framework

Given that the point cloud detected by MmWave radar is
sparse and has limited information (including distance, velocity,
azimuth and RCS), we analyse the multidimensional feature
information and distribution characteristics of the point cloud
data, and propose an adaptive point cloud clustering algorithm
based on three main modules: clustering based on distance and
velocity, adaptive ellipse gate and cluster merging based on
azimuth, as shown in Figure 2.

Our algorithm dynamically adjusts the ellipse gate based
on point cloud RCS to accommodate the density distribution
characteristics of various vehicle point clouds. By integrating
distance and speed information, our algorithm segments vehicle
target point clouds to achieve optimal clustering results. The
algorithm sets a minimum number of points for clustering
based on distance to accurately filter out noise points and
reduce the rate of missed vehicle targets. At last, we employs
cluster merging based on azimuth to address the issues of
large vehicle fragmentation and the presence of outliers speed
points within clusters. Our algorithm has been tested under real
road conditions, demonstrating superior accuracy in clustering
results.

III. ADAPTIVE POINT CLOUD CLUSTERING ALGORITHM

A. Clustering Based on Distance and Velocity

The traditional DBSCAN cluster algorithm uses ϵ as the
neighborhood distance threshold, however, in real traffic sce-
narios, speed is also an extremely important feature information
used to differentiate between different vehicles. Therefore, we
incorporate velocity as an additional dimension threshold and
calculate the points that falling into the set

Nϵ(xj) = {xi ∈ D|dis(xi, xj) ≤ ϵd, vel(vi, vj) ≤ ϵv}, (1)

where D is the set of all points, ϵd is the distance threshold, ϵv
is the velocity threshold, dis(xi, xj) is the distance difference

Fig. 2: Framework of roadside MmWave radar clustering algo-
rithm.

between point i and point j and vel(xi, xj) is the velocity
difference between point i and point j.

Furthermore, when addressing the issue of determining the
MinPts required to form clusters at varying distances, selecting
the appropriate MinPtsis uniquely challenging. The DBSCAN
algorithm excels at eliminating noise, making it generally
advisable for MinPts to be no fewer than two. However, for
roadside MmWave radar detection echoes, the uneven density of
the target point clouds, transitioning from dense to sparse from
near to far, results in significant characteristic differences in
vehicle targets. Adhering strictly to traditional DBSCAN rules
may lead to the erroneous classification of target vehicles as
noise and their subsequent exclusion, thereby increasing the
rate of missed detections, expanding blind spots, and reducing
the maximum detection range. Consequently, it is essential to
adjust the setting of MinPts required for clustering according
to the specific characteristics of different areas as

MinPts =

{
2, if x < D

1, if x > D
, (2)

where x represents the radial distance of the point, and D is
a fixed value. The value of MinPts and D has been selected
empirically,and the value of D is generally set as 50m. The
parameters of D and MinPts are derived from extensive empir-
ical measurements and engineering adjustments based on radar
deployment, encompassing a wide array of environments of
roads. The method demonstrated outstanding results in practical
roadside MmWave radar clustering experiments.

B. Adaptive Ellipse Gate

The DBSCAN algorithm aggregates data points within a
specific density range into clusters. The density range represents
a predefined region in space, commonly described as a “beam
gate” in the radar domain. Radar systems typically employ
circular beam gates, with the observed target as the centre.
The determination of whether surrounding data points are
within the target’s density range is based on assessing whether
their distance from the target is less than the preset radius.
However, considering the practical scenario of vehicle point
clouds, where the shape of vehicles is rectangular, adopting



Fig. 3: The effect of different gates on point cloud clustering.

an ellipse gate is more appropriate. As shown in Figure 3,
adaptive ellipse gate that better conform to the distribution of
vehicle-shaped point clouds results in more effective clustering
than the original DBSCAN’s circular gates. We enhance the
ellipse gate’s performance by introducing an adaptive ellipse
gate, adjusting its major and minor axes based on distance and
RCS values. This approach addresses the issue of large vehicle
fragmentation and improves clustering outcomes.

The calculation of the ellipse distance between point i and
point j can be expressed as

dis(i, j) =

√
|xi − xj |2

ε2a
+

|yi − yj |2

ε2b
, (3)

where in the radar coordinate system, xi and xj are the
horizontal coordinates of point i and point j, yi and yj are
the vertical coordinates of point i and point j, and εa is the
major axis and εb is the minor axis to be adjusted by the point
cloud’s RCS.

In real-world traffic scenarios, large and small vehicles
necessitate distinct clustering radius, as employing a uniform
radius may result in segmentation issues for larger vehicles. To
tackle this challenge, it’s pertinent to acknowledge that large
and small vehicles exhibit different RCS, thereby warranting
an adjustment in clustering radii to accommodate their unique
values. Given the variability of RCS detected by MmWave radar
in traffic vehicles—attributable to a multitude of factors, such
as significant fluctuations within the radar’s detection range—a
smooth filtering application reveals distinct characteristics in
these variation curves. Analyzing a diverse array of vehicles,
types, and scenarios enables a rough differentiation of vehicular
characteristics. Within a span from 0m to 70m, vehicles fall
within the radar’s near-field beam, where their RCS precip-
itously declines; beyond 70m, the targets transition into the
radar’s far-field beam, exhibiting more stable features. Hence,
we statistically analyze the RCS variation curves across various
vehicles and scenarios, taking the RCS variation curve of small
vehicles as a point of reference for averaging, and employ
Fourier series to model the function of small vehicle RCS
variation with distance. The Fourier series fitting algorithm
[12], a powerful and flexible mathematical tool, is adept at
breaking down complex functions into a series of simpler sine
and cosine functions. Consequently, we utilize the trigonometric
form of the Fourier series for fitting, and have the average RCS

Fig. 4: εa varies with the Rd.

reference value Rb as

Rb =a0 + a1cos(ωx) + b1sin(ωx) + a2cos(2ωx)+

b2sin(2ωx) + a3cos(3ωx) + b3sin(3ωx),
(4)

where a0, a1, a2, a3, b1, b2, b3 and ω represent the numerical
values obtained following the Fourier fitting process, Rb repre-
sents the RCS calculated on the formula. Subsequently, we will
compare RCS of the point cloud cluster with the Rb, calculating
the difference between the two. The value of Rd =RCS−Rb

will serve as the basis for adjusting the radius of the clustering
ellipses. If the Rd is large, we surmise that the vehicle is likely
a large one, necessitating an increase in εa. Given that the
distinction between large and small vehicle point cloud data is
not markedly evident along the ellipse longitudinal axis, we
primarily adjust the clustering radius of the horizontal axis
based on the Rd, as illustrated in Figure 4. Based on this
scheme, we can calculate the adjusted adaptive ellipse gate.
The function for adjusting εa is also obtained from empirical
measurements and has been extensively tested and fine-tuned
on roads.

C. Cluster Merging Based on Azimuth

Building upon the initial clustering steps, we have observed
instances which becomes challenging for large vehicles to clus-
ter precisely. Furthermore, the radar’s detection of velocity out-
liers within these clusters may have implications in subsequent
tracking efforts. It is imperative to incorporate an additional
clustering phase to address these issues. The essence of this
second phase lies in our belief that clusters encapsulate more
information than individual point clouds [13], thus employing
distinct data from the first phase. Hence, we utilize azimuth to
determine the feasibility of merging two clusters.

Assuming cluster A and cluster B are obtained through
clustering, with the shortest Euclidean distance points in the
two clusters being points i and j, where i ∈ A and j ∈ B, the
a priori condition for the merger of clusters A and cluster B is

dmin < ϵd ∧△x < ϵx ∧△y < ϵy. (5)

The dmin is the Euclidean distance between point i and point
j, and △x and △y represent the differences in the horizontal
and vertical distances between point i and point j. ϵd, ϵx, and
ϵy are the predefined thresholds for Euclidean distance, lateral
distance, and longitudinal distance, respectively. Two clusters
that do not meet the above conditions cannot be merged.



Fig. 5: Experimental scenario of roadside MmWave radar.

If point i and point j satisfy the above conditions, then
comparing the azimuth of point i and point j, if the following
condition is met

|ai − aj | < ϵa, (6)

where ai and aj is the azimuth of point i and point j, and ϵa
is the azimuth merge threshold. In this case, clusters A and B
are merged and considered as one cluster.

IV. EXPERIMENTS AND RESULTS

This section assesses the algorithm designed and presents the
optimized parameter selection. All experiments are conducted
based on a real dataset collected from the CongPu Expressway,
as shown in Figure 5. The dataset is divided into two non-
overlapping segments, each of equal size; one is utilized for
parameter estimation, and the other for evaluation. The efficacy
of the adaptive point cloud clustering algorithm is evaluated
using the V1-score.

A. Parameter Estimation

In the parameter estimation phase, a comprehensive enumer-
ation search was performed on all thresholds of the adaptive
point cloud clustering algorithm to ensure that each combi-
nation of thresholds falls within a reasonable preset range.
For the initial clustering stage, the velocity threshold, denoted
as ϵv was explored within a range from 0.1m/s to 0.7m/s,
and the distance threshold ϵd ranged from 0.8m to 2m. In
the subsequent clustering stage, the azimuth threshold ϵa was
ranged from 0.5° to 2°, while the lateral and longitudinal
distance thresholdsϵy , respectively, were determined to be from
1m to 10m.

The objective of the parameter estimation process is to
enhance the precision and robustness of the clustering algo-
rithm. Accurate parameter estimation enables the algorithm
to identify and cluster similar data points more effectively,
reducing misclassification and thereby significantly improving
the algorithm’s accuracy and reliability. Moreover, sensible
parameter settings can diminish the computational load of the
algorithm, augmenting processing speed and thereby enhancing
efficiency. A meticulous parameter estimation process was
conducted to thoroughly explore and evaluate the performance

Fig. 6: Heatmap of parameter estimation.

of the adaptive point cloud clustering algorithm, with the
outcomes displayed in Figure 6.

This figure illustrates the variation in the algorithm’s accu-
racy across different parameter combinations, where the deeper
purple regions indicate higher accuracy, and the lighter purple
regions denote lower accuracy. Through this process, it was
discovered that a parameter combination of a 1m distance
threshold and a 0.5m/s velocity threshold exhibited optimal
performance, a finding visually corroborated by the deep purple
optimum point in the heatmap. The same methodology was
applied for the parameter estimation of the second clustering
stage, ultimately identifying the optimal parameter combination
as a 1° azimuth threshold, a 1m lateral distance threshold, and
a 5m longitudinal distance threshold.

B. Evaluation Metric

The V1-measure is selected as the evaluation metric for our
experiments, a criterion designed to assess the effectiveness of
clustering, especially in unsupervised learning scenarios where
the ground truth is known. Comprised of homogeneity and
completeness, it aims to holistically appraise the quality of
clustering outcomes. Homogeneity measures whether a cluster
contains only a single actual class data point—achieving its
maximum when each cluster consists solely of a single class.
Completeness evaluates whether all data points of an actual
class are assigned to the same cluster, reaching its maximum
when all data points of a class are included in a single cluster.

H = 1− H(C|K)

H(C)
. (7)

Here, H(C|K) represents the conditional entropy of the true
classes given the clustering result, and H(C) is the entropy of
the true classes. This ratio illustrates how clustering information
reduces the uncertainty of true class information.

C = 1− H(K|C)

H(K)
. (8)

Here, H(K|C) is the conditional entropy of the clustering result
given the true classes, and H(K) is the entropy of the clustering
results. This ratio indicates how true class information reduces
the uncertainty of the clustering outcome.



TABLE I: Detection Clustering Experiments along with The Best Determined Parameters and Scores

# Algorithm V1-score Optimized Parameter Set
1 baseline-DBSCAN 65.18% ϵd = 1.0m
2 distance and velocity DBSCAN 68.52% ϵd = 1.0m, ϵv = 0.5m/s
3 distance and velocity DBSCAN with adaptive gate 70.02% ϵd = 1.0m, ϵv = 0.5m/s
4 adaptive point cloud clustering algorithm 71.61% ϵd = 1.0m, ϵv = 0.5m/s, ϵx = 1m, ϵy = 5m, ϵa = 1°

V1-measure =
2HC
H+ C

. (9)

The V1-measure, the harmonic mean of Homogeneity and
Completeness, is employed to evaluate the quality of clustering
outcomes comprehensively. The harmonic mean is chosen
because it is susceptible to any of the measures being sig-
nificantly low. The advantage of the V1-measure is that it
does not necessitate a direct correspondence between clustering
results and authentic classes, making it particularly suited for
evaluating the clustering effects in unsupervised learning. Ad-
ditionally, considering both the homogeneity and completeness
of the clustering results provides a comprehensive and balanced
assessment of clustering quality.

C. Experiment Analysis

To evaluate the proposed algorithm’s performance, four
experiments are designed, with an overview provided in Ta-
ble I. The original DBSCAN algorithm is selected as the
baseline-DBSCAN experiment (#1). Following the improve-
ments discussed in Section 3, three additional experiments are
sequentially designed. Firstly, an enhanced DBSCAN algorithm
based on distance and velocity thresholds (#2) is introduced,
aimed at augmenting the algorithm’s capability to accurately
differentiate between moving targets and static backgrounds
under varying speed and distance conditions. Subsequently,
optimization through the introduction of adaptive ellipse gate
(#3) aimed at addressing the issue of large vehicle fragmen-
tation. According to the data in the table, the experimental
results obtained by the two alternative algorithms of distance
measurement exhibited slight advantages over the baseline DB-
SCAN algorithm. Building on #3, the study further incorporated
a secondary clustering algorithm based on azimuth angles,
culminating in the adaptive point cloud clustering algorithm
(#4). The experimental outcomes indicate that this two-stage
clustering algorithm significantly surpasses the baseline algo-
rithm, achieving a V1-score of 71.61%.Experimental result
shows that compared with the baseline-DBSCAN algorithm,
the algorithm we proposed can effectively improve the accuracy
of clustering, and each innovative step can also bring better
clustering results.

V. CONCLUSION

We propose an adaptive point cloud clustering algorithm for
improving the accuracy of extended target point cloud clus-
tering in roadside traffic sensing environments. The DBSCAN
algorithm improved by distance and velocity and adaptive

ellipse gate strategy according to vehicle shape, significantly
addresses large vehicle fragmentation and increasing clustering
accuracy. Cluster merging based on azimuth further resolves
large vehicle fragmentation and velocity outlier issues. Exper-
imental and pratical roadside measurement results demonstrate
our algorithm’s superiority to traditional DBSCAN, and each
innovative step can leads to improved clustering outcomes in
roadside MmWave sensing.
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