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Abstract—Ray tracing methods are gaining popularity for
modeling the propagation conditions of wireless links. This adds
them to a series of propagation models for wireless channels,
making the choice of the appropriate model difficult. This paper
evaluates the reliability of several large-scale fading models
by comparison with reference signal received power (RSRP)
measurements obtained through a drive test in a low-rise urban
environment in the 1.855 GHz band. The models integrate
different levels of information regarding the link environment.
The results show that all models underestimate the propagation
loss and that an increase in available information about the
environment does not always enhance the accuracy of a model.
For system-level simulation, a statistical approach shows the best
results, especially in absence of reliable environmental data.

Index Terms—cellular network, fading, large-scale fading,
macroscopic fading, measurements, mobile communications, path
loss model, propagation loss, ray tracing, reference signal received
power, RSRP, shadow fading, shadowing, simulations, system-
level, wireless network

I. INTRODUCTION

Knowing the propagation conditions in a wireless channel
is necessary for designing efficient transmission schemes and
reliable networks. A broad range of propagation models is
available to describe the propagation channel in different
scenarios. This makes it difficult for authors to find a trusted
baseline for investigation and leaves them repeating the same
work for different models [1].

In recent years, ray tracing methods have gained popularity
[2], because they allow the investigation of high frequency
bands without the cost of associated measurements. For mil-
limeter wave (mm-wave) channels, ray tracing has been found
to be sufficiently reliable provided the modeling information
is accurate [3]; the antenna pattern information plays a sig-
nificant role in these highly directive channels. Despite the
strong reliance on often unavailable accurate data, ray tracing
replaces measurements for developing new models [4]. Ray
tracing also comes with a significant computational cost.

When computational efficiency is of concern, the 3rd Gen-
eration Partnership Project (3GPP) [5], European Cooperation
in Science and Technology (COST) [6] and International
Telecommunication Union (ITU) [7] offer a range of conven-
tional propagation models defined for different environments,
such as urban, rural, or indoor. These models are a trusted
baseline for investigations [8].

This paper focuses on large-scale fading models and in-
vestigates their accuracy for a vehicular channel in an urban

environment at 1.855 GHz. RSRP measurements from a drive
test in Vienna, Austria, serve as ground truth for the evaluation
of the propagation models (Section II). The investigation
considers a statistical model, a 3GPP path loss model, two
proposed variations of this 3GPP model, and the MATLAB
ray tracer (Section III).

The amount of information about the transmission environ-
ment increases with each model. Starting with information
about the transmitter and receiver position and adding infor-
mation about the type of environment, the line of sight (LOS)
or non line of sight (NLOS) state of the link, and finally, the
buildings of the city. One aim of this comparison is to evaluate
how well the models perform with readily available knowledge
that is not based on additional measurement campaigns. Hence
the model parameters are not tuned to fit the measurement
results, but general values are considered. The focus on
system-level simulations allows us to trade the accuracy of the
modeling of individual links for the accuracy of the network
behavior.

It is expected that feeding more information about the link
environment to the model leads to more accurate results at
the cost of more complexity. This expectation is not met in
this investigation. The measurements of one base station sector
are qualitatively compared to the propagation loss calculated
using the models (Section IV-A), and the empirical cumulative
distribution functions (ECDFs) of the estimated and measured
reference signal received power (RSRP) values are compared
in Section IV-B to evaluate the model accuracy on system
level. The results show that statistical approaches can model
the network behavior well and that information about the link
environment is only enhancing the model performance if the
information is accurate and used effectively.

II. MEASUREMENT CAMPAIGN

The measurement results were obtained through a drive test,
that collects the reported RSRP of all base stations received
at the user at a frequency of 1.855 GHz with 20 MHz
bandwidth. The dataset contains RSRP values from 143, 581
user positions collected from the three sectors of 33 base
stations, corresponding to data from 99 cells. This dataset is
extensive and includes measurements from the serving cell and
other cells. The drive test was performed in Vienna, Austria in
a low-rise urban environment. The measurement campaign is
described in [9], [10]. An example of the measurement result
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Fig. 1. Link budget for RSRP calculation.

of one sector of a single base station is shown in the upper left
map in Fig. 2. It shows the base station and user locations with
their associated RSRP value, as well as the antenna orientation
and the city geometry.

The RSRP values are standardized in 3GPP TS 36.214 [11].
They are the average power received in the cell-specific ref-
erence symbols over the measurement bandwidth. The RSRP
values are reported in a range from −44 dBm to −140 dBm.
Lower values are not reported and higher values are reported
as the maximum RSRP. In the following, it will be assumed
that small-scale fading is not visible in the RSRP values due
to the averaging over reference symbols.

III. PROPAGATION MODELS

The link budget used in this investigation is shown in Fig. 1.
A link is modeled as a transmitter - with an antenna pattern
and a transmit power Ptx - linked to a receiver, where the link
is affected by large-scale fading L. The user is assumed to be
equipped with an omnidirectional antenna with 0 dBi gain in
all directions. The RSRP corresponds to the received power
at the user Prx and can be expressed as

Prx

∣∣
dBm

= Ptx

∣∣
dBm

+G
∣∣
dBi

− L
∣∣
dB
. (1)

The transmit power at the base station Ptx and antenna
orientation are obtained from the measurement campaign. The
antenna gain G is modeled according to [12]. The propagation
loss or path loss L is modeled using the models described
below.

A. Shadow Fading Model

The shadowing model uses little information about the link
and its surroundings. Only the base station and user positions
from the measurement campaign are used. The propagation
loss is modeled as a combination of free space path loss LFSPL

with path loss exponent α = 2 and log-normal shadow fading
S with mean µ and standard deviation σ. The shadow fading is
correlated as explained in [13]. Table I summarizes the model
parameters.

The total propagation loss Lshadow, used as L in Eq. (1), is
calculated as

Lshadow

∣∣
dB

= LFSPL(α)
∣∣
dB

+ S(µ, σ)
∣∣
dB
. (2)

This model offers a trusted approach to describe the distri-
bution of the propagation loss values. The downside of this
model is that it does not capture specific network geometries.

TABLE I
SHADOWING MODEL PARAMETERS

Free Space Path Loss and Log-Normal Shadowing

path loss exponent α 2
mean shadowing µ 17 dB

shadowing standard deviation σ 9 dB
decorrelation distance 40 ln(2) m

map correlation 0.5

B. 3GPP Path Loss Model

3GPP offers path loss models for many different scenarios.
The urban microcell street canyon model from [5, section 7.4]
has been found to be best suited to describe the measurement
dataset. The measured base station heights exceed the 10 m
base station height prescribed in the model, and the measured
transmit powers do not correspond to the transmit power of
a microcell. Other 3GPP models were considered for this
investigation but showed a worse match with the measurement
results.

The 3GPP model defines a LOS path loss and a NLOS path
loss, as well as a LOS probability. The LOS probability is used
to determine whether a user has a LOS or NLOS connection
to the base station. This random LOS decision selects the
expression used to determine the propagation loss L3GPP.

The 3GPP urban micro street canyon model is intended
to be used in combination with log-normal shadowing with
a standard deviation of σ = 4 dB. The shadowing is not
considered in this investigation.

C. 3GPP Path Loss Model with Deterministic LOS Decision

The 3GPP model described above is now extended with a
deterministic LOS decision. The LOS decision is based on ge-
ometry data extracted from the open street maps database [14].
The interface of the Vienna 5G System-Level Simulator [15]
is used to extract the geometry information from the database.
The propagation loss LdetLOS is then evaluated with the path
loss expressions of the 3GPP urban micro street canyon model.

The LOS decision is based on whether the direct line
between base station and user passes through a wall of a
building from the geometry data. If any wall obstructs the
direct line between the base station and the user, the link is
considered to be NLOS. Otherwise, the link is considered to
be LOS.

The open streets maps database is an open-source database
where the open-source community adds information about
buildings. Thus, the quality of the data entries can vary. For
example, the height of buildings is only sometimes available.
To fill the gap, the building heights are randomly set within
the range specified by the zoning plan of the region in
which the measurements took place. The maximum building
height is 21 m, and the minimum is 9 m. All buildings are
created with flat roofs, which does not accurately represent
the measurement scenario.



D. 3GPP Path Loss Model with Wall Loss

The evaluation showed that the previous model failed to
match the measurements. As a remedy, a geometrical fading
model is proposed here that extends the 3GPP path loss model
with deterministic LOS decision from the previous section
with a wall loss Lwall. The model is a compromise between
the complexity of ray tracing tools and the lack of knowledge
about the environment of conventional models.

The path loss Lgeometry for this model is determined as

Lgeometry

∣∣
dB

= LdetLOS

∣∣
dB

+ Lwall

∣∣
dB
, (3)

where the wall loss is defined as

Lwall

∣∣
dB

= max

(
9 dB,

∑
wall

3.5 dB

)
. (4)

The sum in Eq. (4) is over all walls obstructing the direct line
between base station and user.

E. MATLAB Ray Tracer

The ray tracer offered by MATLAB version R2023b is used.
The environment, including the building heights, is imported
from the open street map database by the ray tracing tool. A
maximum of 5 reflections are considered since evaluation has
shown that further increasing the number of reflections does
not impact the results. The maximum number of diffraction
is limited to one by the available hardware capabilities; for
higher numbers of diffraction, results could not be generated.

To limit complexity, the buildings are generated in the same
area as user measurements are available for each cell. This
leads to users at the border of the cell not receiving any
reflections from the outside of the cell, which can limit result
accuracy. The flat roof shape of the buildings increases the
inaccuracy of the modeling of diffraction.

IV. RESULTS

The different models are analyzed qualitatively in Sec-
tion IV-A, by comparing RSRP maps of one representative
cell. A statistical evaluation is made in Section IV-B by
comparing the ECDFs of the RSRP values generated by each
model.

A. RSRP Maps

The results are depicted in Fig. 2. The upper left corner
shows the RSRP measurement results of all measured user
positions in a selected base station sector. The other maps
show the RSRP values produced by the different models. The
black lines in the maps are the outlines of the buildings; the
colored dots represent the measured user positions and their
RSRP value. The diamond shape represents the base station,
with the gray arrow pointing in the direction of the antenna
orientation. A region of size 800 m × 800 m is shown.

The measurement results show a rather small range of
RSRP values with a strong correlation between neighboring
measurement positions. Besides the shadowing model, all
models underestimate the propagation loss, showing brighter
colors than the measurement results. The lower measurement

results may, in part, be due to losses in the measurement
equipment.

The wave-guiding properties of the streets can only be
observed in the models that consider a geometry-based LOS
decision. Looking at the third intersection to the right of the
base station in the street of the base station, a color change
can be observed from the horizontal street to the vertical street.
This change is slightly visible in the measurement results and
more defined in the maps of the deterministic LOS model, the
wall loss model, and the ray tracer. This shows that shadowing
effects induced by buildings can be modeled when using
geometry information.

The correlation between the distance to the base station and
the propagation loss is present in all models. The colors fade to
lower RSRP values with increasing distance to the base station
in all maps. This behavior stems from the distance-dependent
path loss that is present in all models. The influence of the
orientation of the antenna can also be observed in all models
with slightly brighter colors along the axis of the antenna
orientation.

a) Shadowing Model: The colors in the shadowing map
in the upper right corner of Fig. 2 match the measurement
results best, indicating a good match of the general RSRP
range. The spatial distribution of the RSRP values cannot be
related to the geometry of the city due to the lack of knowledge
about the environment. This shows that the shadowing model
is not appropriate for representing specific network geometries,
but can be useful to model the overall network behavior.

b) 3GPP Model and Extensions: In the 3GPP model
with random LOS decisions, the RSRP values can change
strongly from one user position to a neighboring position. This
is expected, as the 3GPP model randomly switches between
its LOS and NLOS versions. The brighter dots in the 3GPP
map become more sparse when moving away from the base
station since the LOS probability decreases over distance.

Like the shadowing model, the 3GPP model is unaware
of the geometry of the city and cannot reproduce patterns
induced by known blockages. However, the simple extension
with geometric LOS decision strongly improves the correlation
between the measured and the estimated RSRP values.

The addition of a geometry-dependent wall loss remedies
the overestimation of the RSRP values of users further away
from the base station. In the vicinity of the base station, the
estimated RSRP corresponds to the LOS path loss from the
3GPP model.

c) MATLAB Ray Tracer: The results of the MATLAB
ray tracing show a lot of variation in the RSRP values from
one user position to neighboring user positions. The ray tracer
strongly underestimates the propagation loss, but the trends
of street tunneling effects correspond to those observed in the
measurements.

The same evaluation was also performed with older MAT-
LAB versions, in which diffraction was not yet available. In
these investigations, about 15% of user positions could not
be traced and produced no results, underlining the strong
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Fig. 2. RSRP maps of a selected base station sector.

influence of diffraction effects in urban environments at sub-
6 GHz frequencies.

The discrepancies between the measurements and the ray
tracing results could be explained by the inaccurate modeling
of the house roof shape, the lack of elevation information in the
antenna pattern, or the lack of cars in this vehicular scenario.
However, first investigations with the CloudRT ray tracing tool
[16], [17] led to more accurate results insinuating that the
shortcomings lie in the tool and not the method.

The computational complexity of the ray tracing tool
strongly exceeds that of the other models. The simulation
duration for a sector was in the order of a few hours for the
ray tracer and the order of a minute for the other models.
The computational complexity can become prohibitively ex-
pensive in system-level simulations considering both desired
and interfering links.
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B. Statistical Evaluation

This investigation focuses on finding a suitable model for
system-level simulation. The system performance is generally
described statistically, so this section analyzes the ECDFs of
the RSRP values, the errors, and the correlation coefficients
between the measurement and the estimated RSRPs. The
results are shown in Table II and in Fig. 3.

TABLE II
MODEL ERROR IN dB

Shadow 3GPP LOS Dec. Geometry Ray Trace

ē 1.07 -8.91 -2.14 -9.36 -18.15
MAE 11.8 11.1 9.5 10.8 13.6

RMSE 14.9 14.0 12.0 13.6 17.0

a) Modeling Error: As we have seen in Section IV-A,
all models underestimate the propagation loss, except for
the shadowing model. The mean error ē, listed in the first
line of Table II, is a measure of this systematic error. The
table shows that the shadowing and the 3GPP model with
deterministic LOS decision have a small error on average,
while the other models cannot accurately represent the range
of the propagation loss.

The mean error does not adequately represent the error on
each measurement position, so we additionally consider the
mean absolute error (MAE) and the root mean square error
(RMSE) in Table II. For the calculation of the MAE and
RMSE, the results are adjusted for the mean error allowing
the results to be comparable, despite a possible systematic
error due to the measurement equipment. In terms of MAE
and RSRP, all models perform poorly; the 3GPP model with
deterministic LOS decision performs best with an MAE of
9.5 dB and an RMSE of 12 dB. A deep learning approach
on the same dataset was able to achieve an RMSE of about
7 dB [10], showing that the gap between the models and
the measurements can be partially closed. The deep learning
approach, however, requires measurement data to train the
model, which is not required by the models considered here.

Adjusted for the mean error, the model errors lie between
−40 dB and 40 dB, an unacceptably large range for the
modeling error. Small-scale fading effects neglected in the
modeling can partially explain the deviation from the RSRP
measurements. However, the observed error is too large to be
fully justified by this mechanism. The influence of the small-
scale fading on the modeling error is left open to investigation.

b) Correlation Coefficient: The ECDFs in Fig. 3 show a
good match between the distribution of the measured values
and the estimated RSRP values of the shadowing model. The
correlation coefficient of the shadowing model, listed in the
legend in Fig. 3, is small and can be seen as a baseline for
the correlation to the measurement induced by the distance
dependence of the path loss. The correlation coefficient im-
proves slightly for the 3GPP model and the ray tracer to about
ρ = 0.5. The use of a geometry-based LOS decision doubles
the correlation coefficient compared to the shadowing model in
the extended 3GPP models with deterministic LOS decision.
This shows the significance of LOS state for the propagation
conditions.

c) 3GPP Models: The 3GPP model shows a good match
of the shape of the ECDF, both with random and deterministic
LOS decision. In combination with the increased correlation
coefficient, this shows that these models are useful to match
real deployments more closely than a purely statistical ap-
proach. However, the path loss seems to be strongly overes-
timated. Additional analysis shows that positions close to the
base station show too high RSRP values with errors of about
10 dB, while this error is reduced at positions further away
from the base station. This indicates that the 3GPP model has
weaknesses in the close vicinity of base stations.

With the wall loss model, a good match can be achieved
in the low RSRP regime, showing that the model works well
where it is applied. The shape of the wall loss ECDF flattens
for RSRP values higher than −80 dBm. This flattening cannot
be observed in the measurement results. This discrepancy
might stem from the misuse of a micro base station model
for a macro base station deployment.

d) MATLAB Ray Tracer: The RSRP values estimated
with the MATLAB ray tracer show a different overall behavior
than the measurements. Some of the discrepancies can be
explained by inaccuracies in the modeling data, which does
not consider the shape of the roofs, changes that might have
occurred over time, the exact building materials, or the true
antenna pattern. The absence of cars in this vehicular scenario
might also play a significant role, as shown by [18] for a
frequency of 5.9 GHz.

However, an analysis performed with the CloudRT ray
tracing tool [16], [17] and more detailed building information,
showed a better match with a correlation coefficient of ρ = 0.7
and a MAE of 7.3 dB after adjustment for the mean error. This
shows that the MATLAB ray tracer can produce large errors
and should not be trusted blindly.

The accuracy of ray tracing strongly depends on the avail-
ability and accuracy of environmental data. Some environ-
mental data is not static, such as moving cars, and cannot



be accurately modeled without constant surveillance of the
environment or a statistical model. When relying on statistical
descriptions of the propagation channel is necessary, a simple
model is already available in the shadowing model. This
confirms the findings in [19], which show that semi-empirical
models achieve a better fit than ray tracing at a frequency of
2.4 GHz. It should also be noted that the common approach
[20], [21] of training machine learning models with data
generated by ray tracing tools might not result in useful
models.

In terms of computational complexity, the shadowing model
and the 3GPP model are the most efficient. The deterministic
LOS decision used in the extensions of the 3GPP increases
the simulation time by about 20%. The ray tracing increases
the simulation duration by a hundredfold, or about 10000%.

V. CONCLUSION

Comparison of estimated RSRP values with measurements
has shown that all considered large-scale fading models result
in an RMSE above 10 dB. Such large errors are common in
large-scale fading modeling, even when considering ray trac-
ing methods with detailed environment models. In the context
of system-level simulation, statistical models are shown to be
the most appropriate choice, as they offer low computational
complexity and a good fit to the overall network behavior.
When specific geometries are of interest, the determination
of the LOS property of links according to the specified
geometry is an efficient way to increase the accuracy of the
model, reducing the RMSE by almost 3 dB compared to the
shadowing model.

The comparison has also shown that ray tracing models can
be affected by large errors (17dB RMSE) and should not be
used as the basis for the development of new models as is
commonly done in literature. Ray tracing requires accurate and
detailed modeling of the environment, but this information is
often unavailable, rendering ray tracing results inaccurate.

In conclusion, simpler models should be preferred to the
ray tracing approach, especially in the absence of detailed and
accurate environmental information or when computational
efficiency is of concern.
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