
 

 

 

Abstract— This paper proposes a distributed deep 

reinforcement learning (DRL) method with multiple learners for 

AP clustering in large-scale Cell-Free massive MIMO (CF-

mMIMO). In the deployment of large-scale CF-mMIMO with 

many user equipments (UEs) and access points (APs), it is 

necessary to perform AP clustering according to the demand and 

movements of each UE in a lightweight manner and with high 

inference accuracy. However, existing DRL-based methods have 

struggled to learn diverse and site-specific radio environments 

and provide high inference accuracy with small amounts of data 

and small neural network (NN) models for lightweight. To 

address this problem, the proposed method classifies learners for 

each radio environment with the Reference Signal Received 

Power (RSRP) between surrounding APs of the UE to perform 

learning and inference with these multiple learners. Furthermore, 

the proposed method dynamically adjusts the association 

between UE and learners based on the fluctuation in RSRP due 

to the UE's movements, thereby ensuring sufficient agility for 

user mobility. This dynamic association of UEs and learners for 

each radio environment enables efficient learning and improved 

inference accuracy by focusing on UEs in similar radio 

environments, even with small amounts of data and small NN 

models. Simulation evaluations based on actual urban structures 

demonstrated that the proposed method realizes AP clustering 

with higher inference accuracy than existing methods, even with 

small amounts of learning data and small NN models. 

Index Terms—6G, RAN management, deep reinforcement 

learning, Cell-free massive MIMO. 

I. INTRODUCTION 

Numerous organizations have identified robotics as a key use 

case for the sixth-generation mobile communication system 

(6G), anticipated for commercialization around 2030 [1], [2]. 

Mission-critical applications involving remote operation, robots 

replacing human labor, and utilization of Urban Air Mobility 

are key examples. In these 6G use cases, ensuring safety is one 

of the most critical requirements, necessitating constant 

monitoring and control of robots via 6G, regardless of location. 

This implies a strong demand for consistently high radio quality 

anytime and anywhere. However, the fifth-generation systems 

have issues at the cell edge due to increased path loss and inter-

cell interference, leading to degradation of radio quality. 

Cell-free massive MIMO (CF-mMIMO) is a promising 

technology that addresses the cell edge problem [3]. It utilizes 

access points (APs) around user equipment (UE) and a central 

processing unit (CPU) for signal processing, effectively 

suppressing inter-cell interference. Considering the urban and 

large-scale deployment of CF-mMIMO, the computational load 

for signal processing is extremely high. To reduce this 

computational load, AP clustering per user has been proposed 

[4]. Here, an AP cluster is a set of APs that transmit and receive 

radio signals for each UE. As the radio environment and 

required radio quality vary for each UE, a dynamic selection of 

APs for the AP cluster is necessary. Optimization of AP 

clustering using a mathematical approach has been proposed to 

maximize spectrum efficiency or guarantee throughput for each 

UE [5], [6], [7]. However, the optimization for AP clustering is 

a non-linear, non-convex problem due to the complexity of 

inter-UE interference [6]. So, this optimization approach results 

in a computational complexity problem for AP cluster decisions 

in actual environments where UEs move. 

On the other hand, the application of deep reinforcement 

learning (DRL) to the AP clustering problem is being discussed 

[8], [9], [10], [11]. In DRL, an agent uses a neural network (NN) 

to understand the system model and finds the optimal control 

through trial and error [12]. In existing methods [8], [9], [10], 

the agent's actions are defined as arbitrarily selecting a 

combination of APs for each UE. The size of the action space, 

which is the number of possible actions, increases exponentially 

with the number of UEs and APs. In large-scale environments 

with many APs and UEs, a large action space, i.e., a large NN 

size, increases the complexity of learning and decision-making 

time for AP clustering. In [11], the authors design distributed 

DRL for AP clustering, which reduces decision-making time by 

distributing the actors. However, in large-scale environments, 

the inference accuracy for AP clustering is degraded because it 

is difficult to learn the diverse and site-specific radio 

environment for each UE sufficiently with a realistic 

computational load. This degradation becomes more 

pronounced in lightweight online learning with a small-sized 

NN and less data, posing a challenge for the large-scale 

deployment of CF-mMIMO. 

To address this problem, this paper proposes a distributed 

DRL method for radio access network (RAN) management with 

multiple learners for each radio environment. In the proposed 

method, the radio environment is classified into multiple 

categories based on the measurements of the UEs, and classified 

learners are associated with each radio environment. Each 

learner learns the UE's experience in each radio environment, 

and each model tied to the radio environment infers for UEs that 

have similar UE measurements used for training. Since the 

proposed method uses UEs in similar radio environments for 

training, it can learn efficiently with less data and small NN 

models and ensure agility when changes in the radio 

environment occur. In addition, inference is performed on UEs 

in similar radio environments according to UE measurements, 

which improves inference accuracy. For the classification of the 

radio environment, we use the Reference Signal Received 

Power (RSRP) between surrounding APs of the UE, as defined 

in 3GPP and O-RAN. The proposed method is highly feasible 
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since RSRPs can be obtained anytime in 5G compatible UEs 

and O-RAN compatible RAN Intelligent Controller (RIC). To 

describe the proposed method in detail, Section II explains the 

system model of this paper and the challenges when using DRL 
for AP clustering. Then, Section III describes the architecture 

and design of the proposed distributed DRL with multiple 

learners. In Section IV, simulation evaluations in site-specific 

environments based on actual urban structures show that the 

proposed method realizes AP clustering with higher inference 

accuracy than existing methods, even with less learning data and 

smaller NN models. 

II.  SYSTEM MODEL 

A. Architecture 

Figure 1 introduces RAN management architecture with 

virtualized RAN to ensure appropriate radio quality everywhere 

using CF-mMIMO. The concept of this architecture is to 

generate and manage a logical network for each UE on a 

physical infrastructure based on network virtualization, relying 

on virtualized CPU (vCPU) and AP clustering. The vCPU 

processes radio signals from APs within the AP cluster to the 

UE. The RIC, responsible for controlling the logical network, 

manages radio quality by controlling the AP cluster according 

to each UE's mobility and requirements. The RIC manages to 

optimize AP selection for AP clustering that reduces the 

computational load involved in signal processing while 

satisfying the UE's throughput requirements. However, 

selecting the APs to form this AP cluster is a non-linear, non-

convex problem due to the complexity of inter-UE interference 

[6], making it difficult to determine the optimal solution. 

Therefore, we consider the application of AI/ML, especially 

DRL, to find sufficiently near-optimal solutions within realistic 

computation time. AI/ML adaptation to RAN management has 

attracted considerable attention, and its application is being 

actively worked on in O-RAN, where RIC standardization is 

being discussed [13]. In this paper, the UE antenna is assumed 

to be single. 

To select the appropriate APs for AP clustering when many 

UEs are moving and the radio environment is changing moment 

by moment, model updates based on online learning from UE 

measurements are necessary. The upper side of Fig. 1 shows the 

management of AP clustering by online learning using 

reinforcement learning. In the DRL functions within the RIC, 

the actor observes the state from the environmental information 

measured by the UE and AP and takes action. As an evaluation 

of the action, the actor receives a reward from the environment. 

The state, next state, action, and reward are stored in the 

repository as experiences. Concurrently, the learner learns from 

experiences sampled from the repository, and the actor updates 

the model with the learned model from the learner at regular 

intervals. 

B. Mathematical formulation 

In this section, we formulate the system model for AP 

clustering in CF-mMIMO. We consider 𝐾 single-antenna UEs 

in an area in which 𝐿 APs are deployed. The AP index, which 

belongs to an AP cluster for UE 𝑘 , 𝑫𝑘 , is defined as the 

following L -dimensional square matrix, 

𝑫𝑘 = [
𝐷𝑘1 … 0

⋮ ⋱ ⋮
0 … 𝐷𝑘𝐿

] , (1) 

where 𝐷𝑘𝑙  is defined as 

                𝐷𝑘𝑙 = {
1 if AP l serves UE k,
0 otherwise.

(2) 

Let 𝑀𝑘 , which is the set of APs when 𝐷𝑘𝑙 = 1, be the AP 

cluster for UE 𝑘. The SINR of the uplink for UE 𝑘 is defined 

as 

                SINR𝑘
UL =

𝑝𝑘|𝒗𝑘
𝐻𝑫𝑘𝒉̂𝑘|

2

∑ 𝑝𝑖|𝒗𝑘
𝐻𝑫𝑘  𝒉̂𝑖|

2
+ 𝒗𝑘

𝐻𝒁𝑘𝒗𝑘
𝐾
𝑖=1,𝑖≠𝑘

,   (3) 

where 𝒁𝑘 = 𝑫𝑘(∑ 𝑝𝑖𝑪𝑖
𝐾
𝑖=1 + 𝜎2𝑰𝐿)𝑫𝑘, 𝑝𝑖  is the power of the 

uplink signal, and 𝒉̂𝑖  is the estimated channel coefficient. The 

channel coefficients are estimated with the minimum mean 

square error (MMSE) based on the pilot assignment method 

[4]. 𝑪𝑖 is the matrix of the channel estimation error for UE 𝑖, 

which is obtained from the difference between the spatial 

channel correlation matrix estimated with the MMSE and a 

real one. 𝜎2  is the power of thermal noise. 𝑰𝐿  is the 𝐿 -

dimensional identity matrix. The combining vector 𝒗𝑘  is 

given as follows: 

𝒗𝑘 = 𝑝𝑘 (∑ 𝑝𝑖𝑫𝑘𝒉̂𝑖𝒉̂𝑖
𝐻𝑫𝑘 + 𝒁𝑘

𝑖∈𝒫𝑘

)

†

𝑫𝑘𝒉𝑘 (4) 

where, 𝒫𝑘  is the set of UEs where the AP cluster for the UE 

is formed with at least one AP as used in the AP cluster for 

UE 𝑘 expressed as 𝒫𝑘 = {𝑖: 𝑫𝑘𝑫𝑖 ≠ 𝑶𝐿} where 𝑶𝐿 is the 𝐿-

dimensional zero matrix. The uplink throughput 𝑔𝑘 for UE 𝑘 

is calculated with SINR as 

𝑔𝑘 = 𝑊RF log2(1 + SINR𝑘
UL) (5) 

where, 𝑊RF is the total bandwidth of the wireless link. 

The total computational load involved in the signal 

processing required for vCPU is defined as the computational 

load 𝐶comp, which is given by the following equation [4] 

𝐶comp = ∑ (𝐶𝑘
est + 𝐶𝑘

weight
)𝑘∈𝐾 , (6)  

where 𝐶𝑘
est is the computational load required for the channel 

estimation of the UE 𝑘 , 𝐶𝑘
weight

 is the computational load 

required for the weight vector calculation of UE 𝑘, which can 

be expressed as follows 

𝐶𝑘
est = (𝑁𝜏𝑝 + 𝑁2)|𝑀𝑘||𝒫𝑘|, (7)  

 
Fig. 1. RAN management architecture for assuring appropriate radio 

quality everywhere with CF-mMIMO. 
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𝐶𝑘
weight

=
(𝑁|𝑀𝑘|)2 + 𝑁|𝑀𝑘|

2
|𝒫𝑘| + (𝑁|𝑀𝑘|)2

+
(𝑁|𝑀𝑘|)3 − 𝑁|𝑀𝑘|

3
(8)

 

Here, 𝑁 is the number of antennas deployed in the AP, and 𝜏𝑝 

is the number of pilot sequences. The computational load for 

signal processing is proportional to the cube of |𝑀𝑘|, which is 

the number of APs belonging to the AP cluster for UE 𝑘. 

C. Problem statement and related works 

From the perspective of MIMO diversity, the radio quality of 

the UE improves as the size of the AP cluster increases. 

However, as shown in (8), the computational load for signal 

processing increases with the cube of the number of APs 

contained in AP clusters, requiring the minimum necessary AP 

clustering according to user demand. Since the radio 

environment varies depending on the UE’s location, changes in 

the AP cluster that follow user movement are needed. The 

application of DRL to the AP clustering problem is being 

considered [8], [9], [10]. In these methods, the agent's actions 

are defined as arbitrarily selecting a combination of APs for 

each UE. The size of the action space, which is the number of 

possible actions, increases exponentially with the number of 

UEs and APs. In large-scale environments with many APs and 

UEs, a large action space, i.e., a large NN size, increases the 

complexity of learning and decision-making time when 

selecting APs for AP clustering. 

To address this problem, the method in [11] ensures 

scalability by defining an actor for each UE, thereby making the 

size of the actor NN independent of the number of UEs in the 

environment. This reduces the computational load for learning 

and inference. However, while the method works in an ideal 

propagation environment with only line-of-sight (LOS), the 

actual radio environments are complex, with many buildings 

and site-specific propagation characteristics. In large-scale 

environments with diverse and site-specific radio environments, 

it is challenging to sufficiently learn the site-specific radio 

environment with a realistic computational load, leading to a 

decrease in inference accuracy.  Online learning in RAN 

management for CF-mMIMO, as shown in Fig. 1, requires 

agility and real-time inference capabilities, necessitating 

reduced computational load for AP clustering management with 

a small-sized NN and less training data. Therefore, a method 

that can learn diverse radio environments with less training data 

and a small NN while ensuring high inference accuracy is 

needed. 

III. PROPOSED  METHOD 

A. Proposed distributed DRL with multiple learners 

1) Architecture 

To improve inference accuracy in large-scale and diverse 

radio environments, this paper proposes a distributed DRL 

method for RAN management with multiple learners for each 

radio environment. Figure 2 shows the architecture of the 

proposed method. There are multiple learners classified for each 

radio environment and actors defined for each UE. The learners 

and the actors for each UE are tied according to the radio 

environment based on the measurements of the UEs. The 

experiences of UEs associated with each radio environment are 

input into the corresponding learner, and each learner executes 

the learning process individually. The learning model for each 

radio environment is distributed to the actor defined for each UE, 

and inference is performed according to the State. Since the 

UE's radio environment changes according to the UE's 

movement, we associate dynamically the ties between the UE 

and the learner with the UE's measurement information. This 

online learning process based on the UE's measurement 

information is repeated, enabling RAN control according to the 

constantly changing radio environment. Since the proposed 

method uses UEs in similar radio environments for training, it 

can learn efficiently with less data and small NN models. In 

addition, inference accuracy is improved because inference is 

performed using models learned from UEs in similar radio 

environments. 

2) Design of multiple learners 

This paper uses the RSRP, a measurement value defined by 

3GPP, to classify radio environments. This measurement can be 

obtained from 5G compatible UEs, and the RIC can obtain it 

from O-RAN-compatible distributed units in RAN. Let 𝑃𝑙,𝑘 be 

the value of the RSRP between UE k and AP l, and 𝑥𝑖𝑛𝑖  be the 

initial value of the number of APs associated with the AP cluster. 

The initial AP clusters are associated with the APs in order of 

increasing 𝑃𝑙,𝑘. For the classification, we assume that the RSRP 

value follows a normal distribution when a large number of UEs 

are scattered over an area. We classify UEs into four groups 

𝓧1 … 𝓧4 and split and tie the learners to each of these groups. 

We calculate 𝑃𝑘
s = ∑ 𝑃𝑙,𝑘𝑙∈(𝐷𝑘𝑙=1)  and assume that 𝑃𝑘

𝑠 follows a 

normal distribution. Here these groups are defined based on the 

standard deviation 𝜎𝑠  as 𝓧1 = {𝑘| − σs > 𝑃𝑘
s} , 𝓧2 = {𝑘 | −

σs ≤ 𝑃𝑘
s  ≤ 0}, 𝒳3 = {𝑘 | 0 ≤ 𝑃𝑘

s  ≤ σs}, 𝓧4 = {𝑘 |σs ≤ 𝑃𝑘
s }. 

By classifying the radio environment in this ratio-based way, we 

can balance the classification of diverse radio environments and 

the securing of training data. Although there is room to consider 

the number of divisions of the learner in detail in terms of the 

acquired amount of training data and inference accuracy, this is 

not covered in this paper, and we will leave it to future work. 

B. Design for DRL for decision of AP clustering 

1) State 

For decision of AP clustering, we define the state for UE 𝑘 

as 𝑆𝑘 = [|𝑀𝑘|pre, 𝑔̃𝑘, 𝑅𝑘, 𝑅𝑘
pre

, 𝑗𝑘] . The previous AP cluster 

 
Fig. 2. Diagram of proposed distributed DRL with multiple learners. 
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size |𝑀𝑘|pre is needed to determine the difference in the AP 

cluster size from the previous time step. The throughput 

requirement 𝑔̃𝑘  is needed to ascertain the required radio 

quality of the UE. 𝑅𝑘 = [𝑟𝑘,1, 𝑟𝑘,2, … , 𝑟𝑘,𝑏 , … , 𝑟𝑘,𝐵] , where 

𝑟𝑘,𝑏 =  𝑃𝑏,𝑘/ ∑ 𝑃𝑏,i
𝐾
𝑖=1,𝑖≠𝑘  and it denotes the SNR from the 𝑏-

th highest AP using RSRPs. 𝑅𝑘 is an array of SNRs from APs 

arranged in descending order up to the 𝐵-th. 𝑅𝑘
pre

 is 𝑅𝑘 at the 

previous time step. 𝑅𝑘
pre

 helps to learn the change in the 

channel state due to UE mobility. To consider the impact of 

other UEs around UE 𝑘 , we employ 𝑗
𝑘

 as the number of 

overlapping APs in the AP cluster of the UE 𝑘 and other UEs. 

𝑗
𝑘
 is represented as  𝑗

𝑘
= ∑ |𝑫𝑘𝑫𝑖|

𝐾
𝑖=1,𝑖≠𝑘 . 

2) Reward 

We aim to learn the minimum AP cluster size for each UE 

that meets the throughput requirements, depending on the 

radio environment. We define the reward 𝑟𝑘, which consists of 

two factors: throughput satisfaction and the AP cluster 

𝑟𝑘 = 𝑞𝑘𝑚𝑘 (9) 

where, 𝑞𝑘 and 𝑚𝑘 are defined as 

𝑞𝑘 = {
1 𝑔𝑘≥𝑔̃𝑘,
0 otherwise.

, 𝑚𝑘 = 1 − (
|𝑀𝑘|

𝑂
)

3

. 

The term 𝑞𝑘  represents throughput satisfaction, where 𝑔̃𝑘  is 

the preset throughput requirement for UE k. If the throughput 

𝑔𝑘  does not meet the throughput requirement 𝑔̃𝑘  the reward 

becomes 0. The term 𝑚𝑘 represents the factor in the AP cluster 

size. The computational load for signal processing is 

proportional to the cube of the AP cluster size |𝑀𝑘|, as per 

equation (8). The term 𝑚𝑘 decreases in proportion to the cube 

of the AP cluster size normalized by O. The reward is high 

when the throughput requirements are met with the minimum 

AP cluster size for UE k. The parameter 𝑂 is a value larger 

than the maximum number of |𝑀𝑘|, and the appropriate value 

of 𝑂 changes depending on the number of pilot sequences. In 

this paper, we do not discuss this parameter and leave it for 

future work. In the simulations, we use empirically obtained 

values. 

3) Action 

We adopt an action design that specifies the 

increment/decrement in AP cluster size from the previous time 

step to increase or decrease the number of APs belonging to the 

AP cluster, as proposed in [11]. In an environment with densely 

distributed APs, the probability of rapid changes in radio quality 

due to large-scale fading is low, as many APs cover the UE. 

Therefore, it is sufficient for the actor to specify the difference 

in AP cluster size from the previous time step. The action for 

UE 𝑘 is defined as 𝑎𝑘 = 𝛿𝑘 ∈ {−𝑠, −𝑠 + 1, … ,0 , … , 𝑠 − 1, 𝑠}, 

where 𝛿𝑘 is the increment/decrement in the AP cluster size for 

UE 𝑘  from the previous time step. Here, 𝑠  represents the 

variation range by which the AP cluster size can increase or 

decrease in one time step. The AP cluster size is determined as 

|𝑀𝑘| , where |𝑀𝑘|pre  represents the AP cluster size at the 

previous time step. The size of the action space is 2𝑠 + 1. 

IV. PERFORMANCE EVALUATION 

Table I shows the computer simulation conditions and 

evaluation environment for urban cell-free deployment. To 

simulate a site-specific radio environment, we use a 1km2 urban 

structure around Shibuya Station in Tokyo and employ path loss 

data based on ray tracing. To evaluate the proposed method, we 

compare it with the following three methods:  

• Genetic Algorithm (GA): The GA is employed to 
identify the global minimum of non-linear optimization 
problems [15]. An individual is defined as the 
combination of the number of AP cluster sizes for each 
UE. The objective function is formulated as the 
cumulative reward for all UEs. 

• Static Approach (SA): The size of the AP cluster for 
each UE is predetermined. The combination of APs in 
each AP cluster is selected based on signal strength, up 
to the pre-established AP cluster size. To meet the 
throughput requirements in SA, the AP cluster sizes are 
heuristically set to 10, 20, and 40 for UEs with 
throughput requirements of 150, 200, and 250 Mbps, 
respectively. 

• Existing distributed DRL with a single learner (D-
DRL): The D-DRL shows the results with a single 
learner based on all UE information, with the same DRL 
parameters as the proposed, and the DRL design is 
based on [11]. 

First, we show the simulation results of comparing the 

average throughput satisfaction rate versus the amount of 

training data in Fig. 3. The throughput satisfaction rate at a 

time step can be calculated as ∑ 𝑞𝑘𝑘∈𝐾 /𝐾 . The proposed 

method achieves a higher throughput satisfaction rate with 

fewer episodes than existing D-DRL methods. This is because 

it learns efficiently even with less data and small NN models 

by using UEs in a similar radio environment, and the trained 

models infer for UEs with similar measurements and radio 

environments. On the other hand, the existing D-DRL with a 

single learner does not sufficiently learn the site-specific radio 

environment, resulting in low inference accuracy. 

TABLE I: SIMULATION PARAMETERS  

RAN environment parameters 

Simulation area 1km×1km at Shibuya in Tokyo 

Number of deployed APs and UE 400, 100 

Number of antennas in AP 1 

Frequency, bandwidth, sub-carrier 3.5 GHz, 100MHz, 30kHz 

Channel estimation, pilot size MMSE, 24 

UE transmission power 20 dBm 

Path loss and channel fading Ray tracing, Rayleigh fading 

Noise figure, velocity of UEs 7 dB, {4, 30} km/h 

User traffic Full buffer, Uplink 

Throughput requirements, 𝒈̃𝒌 {150, 200, 250} Mbps 

Update intervals of AP cluster 100 msec 

Time step length 50 msec 

Initial AP cluster size 𝒙𝒊𝒏𝒊 5 

DRL parameters 

Online learning framework Ape-X [14] 

NN architecture for Ape-X 
3 hidden layers with 512 units, 2 

hidden layers [14] 

Number of actors 100 

Target network update intervals 2500 

Network parameters copy intervals 500 

Training batch size 512 

Discount factor, learning rate 0.5, 0.00025/4 

Episode length 200 time steps (20 seconds) 

Design parameter 𝑩, 𝑶, 𝒔 10, 400, 2 

GA parameters 

Population size, number of 
generations, mutation rate 

10, 50, 0.2 

 



 

 

Next, Fig. 4 shows the average throughput satisfaction rate 

for the computational load of signal processing 𝐶comp. The 

plot in the upper left indicates that 𝐶comp  is low and the 

throughput satisfaction rate is high. Here, the number of 

episodes for the proposed method and D-DRL is 3. The 

proposed method learns the site-specific radio environment 

with a small amount of learning data and achieves the best 

balance between throughput and computational load for signal 

processing. D-DRL has a low throughput satisfaction rate and 

𝐶comp because it under-allocates the AP cluster. SA has a high 

computational load because it over-allocates APs regardless of 

the radio environment. In GA, the search range is wide in this 

large-scale environment, so it does not obtain a high-quality 

sub-optimal solution, and neither throughput satisfaction nor 

𝐶comp matches the proposed method. 

Fig. 5 shows the average computation time to determine the 

AP cluster for each UE and the number of parameters in NN. 

We use MATLAB and a personal computer (PC) with a Core 

i9-7900X, 64 GB of memory, and SSD storage. From Fig. 5, 

we find that the proposed method has the shortest computation 

time, less than the AP cluster period of 100 msec. This is 

because the proposed DRL design includes a smaller action 

space and NN model than D-DRL. The inference process of 

the proposed method can be parallelized for each actor, so it is 

possible to perform AP clustering that is sufficiently agile for 

user mobility even in larger environments. On the other hand, 

the computation time for the meta-heuristic optimization-

based method using GA is long. This is because calculating 

the inverse matrix for each UE is necessary for calculating the 

objective function when repeating the search, which increases 

the computational load for the decision of AP clustering.  

V. CONCLUSION 

This paper proposed a distributed DRL method with multiple 

learners for AP clustering in CF-mMIMO. Using multiple 

learners, each associated with a distinct radio environment, the 

proposed method allows for efficient learning and improved 

inference accuracy, even with less data and small NN models. 

In addition, the proposed method dynamically adjusts the 

association between UE and learners according to the UE's 

movement, ensuring agility when changes in the radio 

environment occur. Simulation with an actual urban structure 

showed that the proposed method achieves better AP clustering 

with higher inference accuracy than existing methods, even with 

less learning data and smaller NN models. 
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Fig. 5. Comparison for decision time for AP clustering and the number 

of parameters in NN. 

0.001

0.01

0.1

1

10

100

Proposed D-DRL by

[11]

GA

A
P

cl
u

st
er

 d
ec

is
io

n
 t

im
e 

(s
)

0

1000

2000

3000

4000

5000

6000

7000

Proposed D-DRL by

[11]

N
u

m
b

er
 o

f 
p

a
ra

m
et

er
s 

in
 N

N

 
Fig. 3. Throughput satisfaction rate versus the amount of learning data. 
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Fig. 4. Throughput satisfaction rate versus computational load for signal 
processing with different approaches. 
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