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Abstract—The increasingly frequent occurrence of natural
disasters has severely interfered with the operation of fun-
damental infrastructures such as power, transportation, and
communication systems. For these decades-old infrastructures,
enhancing the system resilience requires extremely high upgrade
expenditure. Therefore, more flexible and cost-efficient solutions
are in urgent demand. Equipped with on-broad large-capacity
batteries, electric vehicles (EVs) could serve as mobile post-
disaster rescue devices, namely mobile energy storage (MES).
This paper proposes a flexible post-disaster rescue scheme
using mobile and connected EVs as MESs to supply emer-
gency resources before the fundamental infrastructures fully
recover. Different from existing literature, this paper uncovers
the potential energy supply and communication capabilities of
MESs to provide damaged areas with on-demand energy and
communication resources. Specifically, the uncertainty of natural
disasters of tornadoes and flooding is modelled during different
scenario generations. Then, a two-stage stochastic programming
problem is formulated to determine the MES deployment location
in the pre-disaster stage and the MES service operation in
the post-disaster stage. The generated disaster scenarios are
integrated into the formulated problem to ensure a statistically
optimal result. Simulation results validate the optimality of the
proposed scheme compared to benchmark schemes.

I. INTRODUCTION

In recent years, extreme natural disasters have occurred

increasingly frequently with catastrophic outcomes, includ-

ing power outages, disrupted roads, limited communication

coverage, and more. On the one hand, these decades-old

infrastructures require a high capital expenditure for resilience

enhancement. On the other hand, one low-probability yet

extreme disaster could cost millions of dollars for post-disaster

rescue and recovery. Therefore, the fundamental infrastruc-

tures such as power and communication systems urgently need

a flexible approach to enhance the system resiliency [1].

With the legislative motivation of zero-emission transporta-

tion, electric vehicles (EVs) become increasingly prevalent

[2]. In addition to their advancement in clean transportation,

EVs can serve as mobile energy storage (MES) with their

large battery capacities, mobility, and flexible charging and

discharging capability [3]. Existing literature has explored

utilizing stationary and mobile EVs for post-disaster rescue

[1], [4], [5]. As natural disasters frequently disrupt the power

supply and road transportation, the coupled operation of power

and transportation systems has been studied in [1], [5]. How-

ever, most of the existing works focus on the energy provision

capability of MESs while overlooking their communication

recovery potential.

MESs have the potential to be mobile base stations with

sufficient mounting capability, high battery capacities, and

mobility. In literature, UAVs have been extensively explored as

disaster recovery devices for building a resilient communica-

tion network [6], [7]. The problem is embedded in the limited

battery capacities of UAVs to mount a base station while

hovering around disaster areas for networking services. As

such, MESs become a more realistic solution as mobile base

stations to recover the communication network in disaster-

damaged areas.

Utilizing the MESs as both energy suppliers and mobile

base stations could be cost-efficient due to the geographic

overlapping of communication and power outages. The chal-

lenges occur in how to optimize the limited MES resource

for two rescue services while considering the uncertainty of

natural disasters. In this paper, we address these challenges by

proposing a resilient post-disaster rescue framework with the

following contribution:

• A disaster scenario generation procedure is developed

for tornadoes and flooding as the post-disaster rescue

operation foundation;

• A two-stage stochastic programming problem is formu-

lated to optimize the pre/post-disaster MES operation to

achieve a cost-efficient disaster rescue with the optimal

disaster restoration result.

The remainder of the paper is organized as follows. The

resilient post-disaster rescue framework is introduced in Sec-

tion II. Section III presents the disaster scenario generation

procedure considering tornadoes and flooding, two commonly

occurring disasters in the southeast of the United States. The

problem formulation of the two-stage stochastic programming

problem is shown in Section IV. Section V provides a case

study and finally, Section VI concludes this paper.

II. RESILIENT POST-DISASTER RESCUE FRAMEWORK

The proposed resilient post-diaster rescue framework along

with a 9-bus system illustration are shown in Fig. 1. The

framework is composed of two-stage operation with the first

stage being MES pre-disaster allocation and the second stage

being MES post-disaster rescue operation. Before the disaster

occurs (stage one), the operator needs to charge the MESs

and mount them with base stations. The MESs will then be
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Fig. 1. The operation framework of the resilient post-disaster rescue.

allocated to buses 1, 2, or 3 that have charging facilities for

pre-disaster preparation. During the disaster restoration phase

(stage two) where the fundamental power infrastructure is

under repair, MESs are dispatched to the disaster-damaged

areas (buses 4 to 9) for rescue services. In this paper, MESs

provide two rescue services: energy supply and communica-

tion recovery. Further, the MES routing scheme needs to be

optimized in stage 2 as some road links are disrupted due to

flooding.

In the following sections, we will introduce how tornadoes

and flooding are modelled into different disaster scenarios and

how the proposed framework is formulated and solved as a

two-stage stochastic programming problem.

III. DISASTER SCENARIO GENERATION

Before a disaster happens, the power utility operator will ob-

tain the weather forecast data beforehand and the received data

will be used to generate the disaster scenario for post-disaster

operation analysis. In Tennessee, tornadoes and flooding are

the most common disasters which will be considered in the

proposed framework.

A. Wind-induced Power Damage Model

Strong winds caused by tornadoes could damage the dis-

tribution line poles and therefore, affect the power supply of

certain regions. The failure probability of a power line pole

can be modelled as an exponential function as [10]:

pDi (vt) = min{w1e
w2vt , 1}. (1)

The power failure probability at the i-th bus is denoted as

pDi (vt), which is closely related to the wind speed vt at time

t. w1 and w2 are probability-related parameters for historical

wind data regression.

B. Flooding-induced Transportation Damage Model

The heavy rainfalls caused by flooding could result in road

disruptions. The disruption probability pTj (rt) of road link j
is closely related to accumulated precipitation rt at time t and

can be modelled by a piecewise constant approximation as

[11]:

pTj (rt) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

fT
1 rt ∈ [r0, r1]

fT
2 rt ∈ [r1, r2]

. . . . . .

fT
L rt ∈ [rL−1, rL]

(2)

where fT
j denotes the disruption probability of road link j

when the rainfall volume is within the range of [rL−1, rL].

C. Scenario Generation Procedure

The randomness of tornadoes and flooding could result in

different MES rescue dispatch scenarios, which need to be

characterized and included in the later problem analysis. In

this section, we introduce the scenario generation procedure

to iteratively generate a large set of disaster scenarios that can

be used for post-disaster operation analysis [1]. Monte Carlo

Simulation is used for disaster scenario generation. During

each scenario generation process, random variables a/b will

be sampled in the range [0, 1]. a/b will be compared with

the failure/disruption probabilities of power and transportation

systems, respectively. If the random variables are greater than

the failure/disruption probabilities, the corresponding system

will not be affected by the disaster. The disaster impact on

the bus i is represented by a binary indicator uD,s
i , with 1

indicating an intact bus and 0 denoting a failed bus. Similarly,

the disaster impact on road link j is represented by a binary

indicator uT,s
j , with 1 indicating an intact road link and 0

denoting a failed road link. The whole scenario generation

procedure is illustrated in Algorithm 1.

IV. PROBLEM FORMULATION

A. Stage I - MES Pre-disaster Allocation

In the proposed framework, the power utility operator is the

MES owner and can allocate and dispatch MESs as needed. In

the pre-disaster phase, the operator needs to decide the number

of MESs xz allocated to charging facility z so that the overall

allocation cost
∑

z azxz can be minimized while the expected

post-disaster rescue reward Es∈S[Q(x, u)] in stage two can be

maximized:

max
xz

−
∑
z

azxz + Es[Q(x, s)] (3)

s.t. 0 ≤ xz ≤ Nz, ∀z (3. a)

0 ≤
∑
z

xz ≤ N, (3. b)

where az denotes the MES allocation cost at charging facility

z. s denotes the s-th disaster scenario to consider in stage two

for MES dispatching. Q(x, s) represent the MES rescue re-

ward under s-th scenario. Constraint (3.a) ensures the number



Algorithm 1: Disaster Scenario Generation Procedure

Input: Sampling number Ns, forecasted wind speed

vt, and forecasted precipitation rt
Output: Power and transportation disruption indicators

uD,s
i , uT,s

j

Calculate pDi for power bus i with vt using Eq. (1) ;

Calculate pTj for road link j with rt using Eq. (2)

while s < Ns do
for each power bus i do

Generate random variable a in [0, 1] ;

if a > pDi then uD,s
i = 1 ;

else uD,s
i = 0;

end
for each road link j do

Generate random variable b in [0, 1] ;

if b > pTj then uT,s
j = 1 ;

else uT,s
j = 0;

end
end

of MES allocated to each charging facility can be charged on

time. Constraint (3.b) ensures the number of allocated MESs

is less than the operator’s MES fleet size.

B. Stage II - Scenario-Based Post-Disaster Rescue

Once the MESs are allocated to the charging facilities and

all disaster scenarios have been generated, we can start to

analyze the MES dispatching scheme for rescue services. The

formulated stage-two problem aims to maximize the expected

rescue reward under various disaster scenarios, as follows:

Es[Q(x, s)] = max
yk,s
z,i ,P

s
i

∑
s

p(s) · (RE − CT +RCom), (4)

Under the s-th scenario, the operator decides the number of

MESs dispatched from charging facility z to bus i through the

k-th route (denoted as yk,sz,i ) and the assigned power P s
i for

communication task at bus i. The rescue reward is composed

of the energy supply reward RE, the MES routing cost CT,

and the communication recovery reward RCom.

1) MES Energy Supply Reward: After tornadoes, the dam-

aged power poles cannot provide service and correspondingly,

MESs are dispatched to these damaged areas for rescue

service. The more urgent and sufficient energy is supplied in

the damaged area, the higher the rescue reward. Therefore, the

MES energy supply reward RE is calculated as the summation

of compensated energy:

RE = αE

∑
i

Es
i , (5)

where αE denotes the reward coefficient and Es
i denotes the

overall MES supplied energy at the bus i. The amount of

energy to be supplied at each bus is closely related to the MES

routing choice yk,sz,i and the MES energy supply capacity B,

following constraints below:

Es
i + P s

i Δt =
∑
z

∑
k∈(z,i)

yk,sz,i ·B, ∀i (6)

∑
i

∑
k∈(z,i)

yk,sz,i ≤ xz, ∀z, (7)

0.9(1− uD,s
i )Di ≤ Es

i ≤ 1.1(1− uD,s
i )Di, ∀i (8)

Constraint (6) explains the coupling relation between power,

transportation, and communication system, where MES traffic

flowing to bus i through different routes will supply energy

at bus i. The supplied energy are load supply, denoted as

Es
i and communication recovery supply, denoted as P s

i Δt.
Constraint (7) ensures that the upper bounds of MES charging

facilities are met. Constraint (8) guarantees that the MES

energy provision is within the range of required energy at the

damaged bus.

2) MES Routing Cost: The travelling time of MES dis-

patching from the charging facility to the designated rescue

location will affect the service quality. Therefore, it is quanti-

fied as the routing cost that should be minimized. Under each

disaster scenario, the MES routing cost is calculated as:

CT = αT

∑
k

uk,s
z,i T

k,s
z,i y

k,s
z,i , (9)

where αT denotes the routing cost coefficient. T k,s
z,i denotes

the travelling time on the k-th route from charging facility z to

rescue location i in s-th scenario. uk,s
z,i is the damage indicator

of the k-th route, which can be calculated using the scenario

generated road link indicator uT,s
j as:

uk,s
z,i =

∏
j∈k

uT,s
j . (10)

Constraint (10) states that if a road link is damaged due to

flooding, any route including the damaged road link will be

considered infeasible to travel and the travelling cost will

not be counted. The MES routing is also subject to the road

condition (damaged or not) and road capacity Ck
z,i as:

0 ≤ yk,sz,i ≤ uk,s
z,i · Ck

z,i. (11)

3) MES Communication Recovery Reward: During the

post-disaster rescue, one of the MESs dispatched to each

damaged area will mount and power the base station to recover

the communication coverage. The communication recovery

reward is quantified by the recovered coverage area as:

RCom = αC

∑
i

(1− uD,s
i )

(di)
2

4
λi, (12)

where αC denotes the communication reward coefficient. di
denotes the maximum coverage diameter at bus i and λi

denotes the user density near bus i. The reward calculates the



TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value

w1 5× 10−5 w2 4.2× 10−2

N 70 B 5 kWh

SNRm 20 dB Ii 100 mW

hi 2.718 Ki 0.37

αi 2 αE 15

αT 2 αC 30

m 22.9 n 0

summation of recovered communication coverage of damaged

power buses. MESs adjust their communication power P s
i to

maximize the communication coverage for the damaged area.

The allocated communication power has a linear relationship

with the MES transmission power P c
i due to the RF amplifier

loss [12]:

P s
i = mP c

i + n. (13)

The MES transmission power in area i has a direct impact

on the communication power P l
i received by user l at bus i,

which is calculated as [13]:

P l
i = P c

i hiKi(d
l
i)
−αi . (14)

hi denotes the fading channel parameter. Ki and αi represent

the path loss parameters. dli denotes the distance between user

l and the MES at bus i. The signal-to-noise ratio for user l
served by the MES at bus i is calculated by:

SNRl
i =

P l
i

Il + σ2
, (15)

where Il denotes the interference of user l. In the post-disaster

scenario, users will not have other communication methods

and this item can be ignored. σ2 denotes the white noise. If the

user’s SNR is higher than a predefined threshold SNRm, the

user can successfully receive the signal from MES. Therefore,

the furthest user the MES can reach is at the exact SNR

threshold [12]:

di = max dli (s.t. SNRl
i ≥ SNRm). (16)

The formulated problem is a mixed integer linear problem in

nature and can be efficiently solved by off-the-shelf solver

such as CPLEX.

V. CASE STUDY

A. Simulation Setting

The case study is conducted on the 9-bus

power/transportation system, as shown in Fig. 1.

Disaster-related weather data could be obtained from

the Meteorological Bureau in real life. During the simulation,
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Fig. 2. Operation cost comparison under different wind speeds.

we utilize historic weather data. The wind speeds at different

levels of tornadoes are referred to [14] and the rainfall level

of flooding along with its piecewise probability are referred to

[15]. The load demand at each bus is sampled between 30 and

100 kWh. All related simulation parameters are presented in

Table I. The communication channel parameters are referred

to [7]. Based on the data, the scenario generation has been

performed 20 times. The optimization model of the proposed

scheme along with two benchmark schemes are implemented

on GAMS using an MIP solver.

B. Simulation Results

1) Rescue Performance in Tornado Scenario: The post-

disaster rescue performance of the proposed scheme and two

benchmark schemes under different wind speeds (i.e., different

tornado levels) are shown in Fig. 2. The first benchmark

scheme, the equal scheme, assigns most MESs to the charging

facilities with the lowest allocation cost. The second bench-

mark, the random scheme, randomly assigns MESs to three

charging facilities without considering the allocation cost. It

is shown that the proposed scheme has the best performance

as the wind speed increases from tornado level 2 to level 4.

The equal scheme has a better performance compared to the

random scheme as it greedily chooses the facilities with the

lowest allocation cost, which results in a lower allocation cost

compared to the random scheme.

2) Cost Analysis in Flooding Scenario: We also analyze

the impact of flooding severity on the MES dispatch and

rescue service, quantified by different service revenue/cost, as

shown in Fig. 3. It can be observed that as rainfall increases,

the overall revenue decreases. This is due to the increasing

tendency of road disruption, which can be reflected in the

transportation cost. With flooding, some regular chosen routes

that are faster may not be available and MESs need to

route on longer routes. The energy supply revenue (power

revenue) also decreases as MESs may not travel to some of the

damaged areas due to severe road disruption. Correspondingly,

the communication revenue also decreases as MESs cannot

provide the optimal coverage for all damaged areas.



0 20 40 60 80 100
Rainfall (mm)

500

1000

1500

2000

2500

3000

3500

Po
st

-d
is

as
te

r c
os

t d
is

tri
bu

tio
n 

($
)

Overall cost
Power revenue
Transportation cost
Comm revenue

Fig. 3. Operation cost comparison under different rainfall scenarios.

0 5 10 15 20 25 30
Communication coefficient

0

5

10

15

20

25

C
om

m
un

ic
at

io
n 

co
ve

ra
ge

 (s
qu

ar
e-

m
et

er
)

Fig. 4. Communication coverage under different service coefficients.

3) Communication Coverage Analysis: Considering the

rescue operation competes for resources for multiple systems.

We further study the communication coverage performance

with respect to its service coefficient, which is shown in

Fig. 4. When the coefficient is low (less than 6), there is

no communication coverage, as its revenue is much smaller

than providing load energy. When the coefficient is high

(higher than 22), the MES communication coverage reaches

its maximum due to the MES battery limit. In between the

coefficient range of 6 and 22, the communication coverage

increases as MESs allocate more energy for mobile base

stations.

VI. CONCLUSION

In this paper, we propose to use mobile EVs as dual-

functional rescue devices after natural disasters occur to pro-

vide energy supply and communication coverage services.

First, a resilient post-disaster rescue framework has been

proposed for efficient usage of mobile and connected EVs

as MESs. To characterize features of different disasters, a

scenario generation procedure has been developed to model

the disaster impact on power, transportation, and communi-

cation systems. Then, a two-stage stochastic programming

problem has been formulated to optimize the pre-disaster MES

allocation and post-disaster MES rescue service operation.

The simulation results have validated the effectiveness of

the proposed scheme while also discussing the impact of

different disasters on MES dispatch. In our future work, we

will consider the cooperation between MESs and UAVs for a

more effective communication coverage recovery.
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