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Abstract—Long Range Wide Area Network (LoRaWAN) is
a wireless communication protocol that facilitates efficient and
wide-range communication under low-power conditions. Over-
the-air activation (OTAA) is a process recommended by Lo-
RaWAN v1.0.4 (latest version) that enables end devices to join
the network with the help of the joining server and generate
the session keys for further communications. However, OTAA
is vulnerable to potential security threats due to unencrypted
join request messages and the reuse of the same encryption
keys. In this paper, we present a new security enhancement
that addresses the aforesaid security issues. In the proposed
scheme, we encrypt the join request message using a secret key
to ensure data confidentiality. In addition, we incorporate the use
of a random nonce in the proposed joining procedure to protect
LoRaWAN against attacks related to the reuse of the same key.
We show that the adversary cannot learn sensitive information
from the join request message and reuse the AppKey to execute
the eavesdropping and unauthorized activation attacks with non-
negligible probability.

Index Terms—Long Range Wide Area Network (LoRaWAN),
Encryption, Over-The-Air-Activation (OTAA), Satellite Commu-
nication.

I. INTRODUCTION

Internet of Things (IoTs) are becoming pervasive and a fun-
damental business interest in global commerce. LoRaWAN, a
low-power and wide-area network protocol, offers a scalable
and resilient solution for interconnecting IoT devices over a
large geographical coverage. This technology caters to the
distinct requirements of IoT applications by enabling wireless
data transmission from sensors and devices to the network.
The long-range capacities, low power usage, and support for
various IoT use cases of LoRaWAN render it an optimal
selection for interconnecting actuators, sensors, and other IoT
devices [1]. The LoRaWAN architecture includes of five main
entities: end devices, gateways, network server, join server,
and application server.

Over-the-air activation (OTAA) is a vital notion of Lo-
RaWAN, playing an important role in securely joining end
devices to a network [1]. IoT devices start the process by
sending a joining request to the join server through the
gateway server. The join server responds to the end device
if it is eligible to join the network. The end device learns
the factors from the join response. These factors are used to
generate the session keys, which are applicable in forthcoming
communications.

Although LoRaWAN v1.0.4 considers OTAA as a secure
algorithm, OTAA is vulnerable to serious security issues.
Firstly, according to OTAA, the end device will send the join
request containing the sensitive information in unencrypted
form. As a result, an adversary may intercept the communi-
cation and learn the sensitive information. The attacker may
exploit the information to execute a replay attack or man-in-
the-middle attack. Secondly, the app key (i.e., a cryptographic
encryption key) is used by the end device and the join server
to derive the session keys. Nevertheless, reusing a single key
across multiple sessions could give rise to significant security
vulnerabilities. Specifically, the adversary who successfully
obtains the AppKey, can exploit the key to expose sensitive
information through eavesdropping or perform unauthorized
activation.

In this paper, we propose a new security advancement
for OTAA to resolve the aforesaid security concerns. In our
approach, we encrypt the join request using AppKey. As the
key is secretly shared between the end device and the join
server, it limits the access of the join request’s content to only
the legitimate end device and the join server. Additionally,
we include a random nonce along with DevNonce in the
proposed approach. Hence, the join server, which knows
DevNonce and AppKey, is able to retrieve the random nonce
from the join request message. The random nonce, along with
AppKey, is used to derive the session keys.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we briefly discuss LoRaWAN architecture
and OTAA. Thereafter, we explain the security issues in
OTAA.

A. LoRaWAN Architecture

A low-power, wide-area networking protocol, LoRaWAN
is constructed using the LoRa radio modulation method. It
connects devices to the network wirelessly and facilitates
communication between network gateways and end-node de-
vices. LoRaWAN v1.0.4 refers to the latest version that was
released in October 2020. It potentially introduces new fea-
tures, bug corrections, and other enhancements as compared
to its predecessors. LoRaWAN architecture is intended to
enable low-power IoT devices to communicate efficiently over
extended distances. The primary components of the proposed
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architecture are as follows: End Devices (ED), Satellite
Gateways (SG), Network Server (NS), Join Server (JS), and
Application Server (AS).

• End Devices (ED): They are the devices that send data to
the gateway through LoRa network. ED comprises the
following components: (1) sensors, which measure en-
vironmental parameters including pressure, temperature,
vibration, humidity, velocity, etc.; (2) a LoRa transceiver,
which enables wireless communication via LoRa modu-
lation mechanism; and (3) microcontrollers, which over-
see data processing, communication management, and
device functions.

• Satellite Gateways (SG): They act as intermediaries
between the end devices and the network server. SG
establishes communication with ED via LoRaWAN
technologies and with the network server via backhaul
technologies, including ethernet, Wi-Fi, and cellular tech-
nology.

• Network Server (NS): It coordinates the inter-device
(IoT device) communication with the other parts of the
network. The functionalities of NS include validating
and processing uplink messages (i.e., data sent by EDs
through SG), managing device activation with the help
of the join server, and routing downlink messages (i.e.,
application server’s commands/responses to end devices).

• Join Server (JS): It coordinates with NS to ensure
the secure joining of new end devices. Additionally, JS
generates and distributes session keys for newly joined
EDs.

• Application Server (AS): It is responsible for managing
and processing data obtained from EDs.

B. Over-the-Air Activation (OTAA)

It is an essential procedure in LoRaWAN that facilitates the
secure connection of end devices to the LoRaWAN network.
ED initiates the process by submitting an “Join-Request”
message. After validating the request, NS responds with a
“Join-Accept” message. ED and JS use the parameters of
“Join Accept” to derive the session keys. These key are used
to encrypt the payload during further communication with
NS and AS. In the following, we discuss the steps of OTAA
process in detail.

1) ED sends a “Join-Request” to NS. The request mes-
sage includes JoinEUI , DevEUI , and DevNonce.
JoinEUI is an 8-byte universally unique identifier
assigned to the join server by the network operator
from IEEE EUI64 address space. DevEUI is an 8-
byte universally unique identifier assigned to the end
device by the device manufacturer from IEEE EUI64
address space. DevNonce is a 2-byte counter started
from 0 and increments with every Join-Request. The
value of DevNonce is stored by ED and NS in their
non-volatile memory. DevNonce cannot be reused or
changed. JS rejects “Join-Request”, if DevNonce is
not correct.

As per the latest version “LoRaWAN v1.0.4”, Join-
Request is not encrypted.

2) JS validates the received request. If ED is eligible
to join the network, JS responds with “Join-Accept”.
The accept message contains: JoinNonce, NetID,
DevAddr, DLSettings, RXDelay, and CFList.
JoinNonce is a 3-byte distinct value provided by JS.
NetID is a 3-byte network identifier value. DevAddr
is a 4-byte distinct value allotted by the server to
each end device that is connected to it. DLSettings
and RXDelay are downlink configuration settings and
delay-related values, respectively. CFList stands for
channel frequency list values.
JS derives the session keys as follows.

NwkSKey

= AES128 encrypt(AppKey,

0× 01|JoinNonce|NetID|DevNonce|pad16)
(1)

AppSKey

= AES128 encrypt(AppKey,

0× 02|JoinNonce|NetID|DevNonce|pad16)
(2)

3) ED generates NwkSKey and AppSKey using
JoinNonce and NetID obtained from Join-Accept as
discussed in equations 1 and 2.

C. Security Issues in OTAA

OTAA algorithm faces the following potential security
issues related to unencrypted Join Requests.

• Exposure of DevEUI: An attacker may easily reveal
ED’s unique identifier by intercepting the communica-
tion between the ED and JS because the request mes-
sage is unencrypted. S/he may exploit this information
to execute the impersonation attack.

• Replay attack: For disrupting the upcoming joining pro-
cesses, an adversary may eavesdrop on the join request
and replay it by modifying DevNonce value. Whenever
ED sends the join request again for the subsequent
session, JS discards it as the received DevNonce value
does not match the stored value.

• Man-in-the-Middle Attacks: An adversary may intercept
the unencrypted request, alter its contents, and forward
the modified request to JS. It may result in the activation
of an unauthorized device.

The reuse of AppKey by an end device presents the following
security vulnerabilities:

• Activation of unauthorized device: An attacker who ob-
tains AppKey may manipulate it to activate illegitimate
instances of the compromised device on the network.

• Eavesdropping: An adversary may eavesdrop and decrypt
communications associated with the compromised device
when AppKey is compromised.



III. PROPOSED APPROACH

In this section, we propose a new security enhancement in
OTAA. The proposed scheme addresses the security issues of
OTAA as mentioned in Section II-C. The proposed approach
is depicted in Figure III.

1) LoRaWAN v1.0.4 assumes that the end device (ED) has
prior knowledge about DevEUI , JoinEUI , AppKey,
and DevNonce. As described in Section II-B, DevEUI
is a unique identifier of each end device, and it is
assigned by the device manufacturer. The unique iden-
tifier of the join server (JS) is denoted by JoinEUI .
AppKey is a cryptographic key that is shared in secret
between JS and ED.
Initially, ED generates a pseudorandom value Rseed

using a secure and lightweight pseudorandom generator.
It computes DevNonce ⊕ Rseed. ED generates the
Join-Request frame that includes JoinEUI , DevEUI ,
and DevNonce⊕Rseed. To ensure confidentiality, ED
encrypts the Join-Request using AppKey and AES
encryption algorithm in ECB mode. ED sends the
encrypted join request to the join server via the gateway
server.

2) JS decrypts the received request using AppKey and
AES decryption algorithm in ECB mode. Then, the
server checks whether the requesting end-device is
permissible to join the network. If ED is eligible, JS
extracts the random value Rseed from DevNonce ⊕
Rseed as the server already knows DevNonce value
corresponding to this device. JS uses Rseed and secure
PRNG and derives a random values Rval. The server
derives the session keys as follows.

NwkSKey

= AES128 encrypt(AppKey ⊕Rval,

0× 01|JoinNonce|NetID|DevNonce|pad16)
(3)

AppSKey

= AES128 encrypt(AppKey ⊕Rval,

0× 02|JoinNonce|NetID|DevNonce|pad16)
(4)

JS geneartes Join-Accept frame that consists of
JoinNonce, NetID, DevAddr, DLSettings,
RXDelay, and CFList. The server encrypts the
accept message using AES algorithm in ECB mode as
described in LoRaWAN v1.0.4. JS sends the encrypted
accept message to ED.

3) ED decrypts the received join accept message using
AES algorithm in ECB mode. The device computes the
session keys using equation 3 and 4.

IV. SECURITY ANALYSIS

In this section, we analyze the security and performance of
the proposed approach.

Security issues related to unencrypted Join Requests

As discussed in Section II-C, the adversary may obtain
DevEUI , JoinEUI , and DevNonce by intercepting the
unencrypted join request in OTAA. Using this information, the
adversary may implement the impersonation attack. Moreover,
the attacker may disrupt the system by replaying the inter-
cepted message with the altered DevNonce. Consequently,
the join server (JS) declines the subsequent request sent by
the genuine end device (ED) due to a discrepancy between
the received value of DevNonce and the stored value. The
adversary may exploit the unencrypted join request to conduct
the man-in-the-middle attack.

For protection against the aforementioned security prob-
lems, we proposed the encryption for the join request. In
particular, ED encrypts the join request using AppKey and
AES encryption algorithm in ECB mode. Therefore, only JS
can decrypt the join request message using AES decryption
algorithm because only JS and genuine ED know AppKey.
The probability of an adversary to correctly guess AppKey
is:

(5)Pr(Succ− 1) = 2−128 + ϵ1(n)

Since AppKey is a randomly generated key, ϵ1(n) is neg-
ligible. In this way, the attacker cannot decrypt the join
request and learn the sensitive information with non-negligible
probability. If s/he captures and replays the same request
message, JS rejects the request due to the repetition of the
same DevNonce value.

Security issues related to reuse of AppKey

AppKey is a root key used to encrypt the communications
between ED and JS and generate the session keys. As
discussed in Section II-C, if an attacker successfully obtains
AppKey, s/he can easily eavesdrop the communication and
learn the sensitive content. Furthermore, the attacker may
exploit the AppKey for activating the illegal instances of the
victim device on the network.

For protection against the aforementioned attacks, we de-
ploy a random nonce along with AppKey as discussed in
Section III. AppKey ⊕R is used to encrypt/decrypt the join
accept message and generate the session keys. The probability
for an adversary to correctly guess the value of R is:

(6)Pr(Succ2) = 2−128 + ϵ2(n)

Since R is generated using a secure PRNG, ϵ2(n) is negligible.
In this way, the adversary cannot reuse the AppKey to execute
the attacks with non-negligible probability.

V. RELATED WORK

A study conducted by Oniga et al. [2] examined the
security dimensions of LoRaWAN. The authors implemented
the scenarios of the security attacks such as Sniffing, Im-
personation, Replay, False modification in communication
parameters, Man-in-the-middle attack, DOS, Intrusion, and
malware. The authors also discussed the recommendations
to protect LoRaWAN against the discussed security attacks.
In [3], Butun et al. provided a comprehensive study about
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Fig. 1. Proposed Approach

LoRaWAN v1.1 and its security vulnerabilities. For OTAA in
LoRaWAN v1.1, the authors discussed security threats, includ-
ing replay attacks, man-in-the-middle attacks, traffic analysis,
beacon synchronization, and RF interference. Furthermore, the
authors deliberated on potential countermeasures against the
aforementioned threats, including the use of dynamic session
states, the implementation of secure key management, and the
consideration of backward compatibility implications.

Eldefrawy et al. [4] presented formal security studies of
LoRaWAN versions 1.0 and 1.1. The authors analyzed the
security flaws in the key exchange procedure utilizing the
Scyther utility. A vulnerability in LoRaWAN v1.0 was identi-
fied in its lack of synchronization, which rendered it suscepti-
ble to replay attacks. Nevertheless, the authors were unable to
identify any security vulnerabilities in LoRaWAN v1.1 due to
the limitations of the Scyther tool. The study does not consider
real-world implementation and deployment scenarios, which
may introduce additional security vulnerabilities. Moreover,
the research does not consider important security aspects such
as data encryption and integrity. Fehri et al. [5] proposed an
experimental investigation of OTAA that examines collisions,
retransmissions, and the joining process cycle. Kuntke et
al. [6] presented a review of LoRaWAN related security issues
in the context of IoT systems in agriculture. The security
vulnerabilities associated with LoRaWAN were examined by
Naidu et al. [7], including those pertaining to physical devices,
DoS attacks, bit reversal attacks, ACK spoofing, energy ex-
haustion, and key-related attacks.

Yang et al. [8] implemented the five attacks against Lo-
RaWAN v1.0.2: Battery exhaustion attack, Replay attack,
Eavesdropping, Message falsification, and Alternation in ac-
knowledgment packets. The authors proposed the security
measures to defend against these attacks: (1) Counter value
management and rekeying to safeguard against eavesdropping,

(2) Secure joining process, physical protection, and rekeying
to prevent replay attacks, (3) Authenticated encryption and
hash value inclusion to prevent unauthorized modification
of message and acknowledgment packets. Butun et al. [9]
conducted an extensive investigation into the security vulner-
abilities of LoRaWAN v1.1, including bit flipping, fraudulent
packets, flooding, jamming attacks, and man-in-the-middle
attacks. The attacks are classified as follows by the authors:
(1) MITM attack, (2) Physical attack, (3) Dishonest gateway
attack, and (4) Routing attack. Secure key management,
secure nonce, and counter management, secure authentication
schemes, and the implementation of tamper-resistant hardware
were the security measures proposed by the authors.

Mårlind et al. [10] proposed a public key cryptography-
based OTAA scheme. The suggested methodology enables the
devices to derive the updated key periodically through the
utilization of an elliptic curve algorithm. Ribeiro et al. [11],
[12] proposed a blockchain-based key management scheme
for LoRaWAN. The authors assumed that the joining server
is a single point of failure because it is responsible for
storing and managing all keys. As a solution, Ribeiro et
al. deployed a blockchain architecture in conjunction with
the joining server to manage the key securely. In practice,
however, the centralized nature of the joining server may
be incompatible with the decentralized architecture of the
blockchain. Noura et al. [13] discussed a detailed survey
of security issues and mitigation techniques for LoRaWAN.
The authors elaborated on LoRaWAN architecture and in-
built security features. Moreover, security vulnerabilities such
as authentication attacks, availability attacks, confidentiality
attacks, and integrity attacks were discussed [13]. Hess et
al. [14] propose a firmware update server that operates in
conjunction with ChirpStack. Noura et al. [15] proposed
counter-based and physical channel-based solutions against



eavesdropping and replay attacks on ABP protocol.
Milani et al. [16] introduced a rejoining procedure based

on a public key for OTAA. Given that OTAA prohibits
the modification of root keys, the authors employed elliptic
curve methodology to construct an additional layer. Barriga
et al. [17] analyzed the authentication issues on the gateway
using the Scyther tool. The authors proposed a session key
management protocol to protect the authentication scheme.
The jamming attack on OTAA was discussed in [18]. Fujdiak
et al. [19] compare the performance, security, and cost of
private and public LoRaWAN deployments. The comparison is
conducted in three dimensions: communication performance,
security, and cost analysis. Sujatha et al. [20] presented a
modified elliptic curve based and artificial flora based key
generation scheme for the joining process in OTAA. This
modified algorithm improves performance in terms of latency,
throughput, and timeout messages. Abboud et al. [21] demon-
strates that augmenting the key size from 128 to 256 bits
significantly enhances the resilience of LoRaWAN against
various cyber attacks. Dave et al. presented new ownership
verification schemes for cloud based architecture in [22], [23].
The secure encryption schemes for deduplication architecture
were introduced in [24], [25]. In [26], Dave et al. proposed a
new key management scheme for IoT systems.

VI. CONCLUSION

In this paper, we address the potential security risks of
OTAA due to unencrypted join requests and reuse of the
same AppKey. In particular, the adversary can eavesdrop
on the join request and exploit the sensitive information to
execute replay and man-in-the-middle attacks in OTAA. We
propose encrypting the join request to protect against these
security risks. It restricts the access of request messages
to legitimate entities. Next, the end device reuses the same
AppKey in OTAA. Hence, the attacker who captures the
AppKey is able to eavesdrop on the communication and
execute the false activation attack. To mitigate these security
risks, we propose a random nonce along with AppKey to
randomize the key for each session. The security analysis
of the proposed enhancement demonstrates that the adversary
cannot execute the attacks with non-negligible probability. As
a future work, we plan to implement the proposed scheme in
a real environment.

ACKNOWLEDGEMENTS

This work is supported by New Faculty Seed Grant (Project
ID: 1548), BITS Pilani, India.

REFERENCES

[1] “TS001-1.0.4 LoRaWAN L2 1.0.4 Specification,”
https://resources.lora-alliance.org/technical-specifications/
ts001-1-0-4-lorawan-l2-1-0-4-specification, accessed: 2024-01-01.

[2] B. Oniga, V. Dadarlat, E. De Poorter, and A. Munteanu, “Analysis,
design and implementation of secure lorawan sensor networks,” in
2017 13th IEEE International Conference on Intelligent Computer
Communication and Processing (ICCP). IEEE, 2017, pp. 421–428.

[3] I. Butun, N. Pereira, and M. Gidlund, “Analysis of lorawan v1. 1
security,” in Proceedings of the 4th ACM MobiHoc Workshop on
Experiences with the Design and Implementation of Smart Objects,
2018, pp. 1–6.

[4] M. Eldefrawy, I. Butun, N. Pereira, and M. Gidlund, “Formal security
analysis of lorawan,” Computer Networks, vol. 148, pp. 328–339, 2019.

[5] C. El Fehri, N. Baccour, P. Berthou, and I. Kammoun, “Experimental
analysis of the over-the-air activation procedure in lorawan,” in 2021
17th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob). IEEE, 2021, pp. 30–35.

[6] F. Kuntke, V. Romanenko, S. Linsner, E. Steinbrink, and C. Reuter,
“Lorawan security issues and mitigation options by the example of agri-
cultural iot scenarios,” Transactions on Emerging Telecommunications
Technologies, vol. 33, no. 5, p. e4452, 2022.

[7] D. Naidu and N. K. Ray, “Review on authentication schemes for device
security in lorawan,” in 2021 19th OITS International Conference on
Information Technology (OCIT). IEEE, 2021, pp. 387–392.

[8] X. Yang, E. Karampatzakis, C. Doerr, and F. Kuipers, “Security vulnera-
bilities in lorawan,” in 2018 IEEE/ACM Third International Conference
on Internet-of-Things Design and Implementation (IoTDI). IEEE, 2018,
pp. 129–140.

[9] I. Butun, N. Pereira, and M. Gidlund, “Security risk analysis of lorawan
and future directions,” Future Internet, vol. 11, no. 1, p. 3, 2018.
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