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Abstract—This paper investigates a robust resource allocation
for reconfigurable intelligent surface (RIS) aided vehicle-to-
everything (V2X) communications with imperfect channel state
information (CSI). To satisfy the diverse quality-of-service (QoS)
requirements of V2X communications, we aim at maximizing
the sum capacity of cellular user equipments (CUEs) while
guaranteeing the outage probability constraints of vehicular user
equipments (VUEs). Then, the considered problem is decomposed
into the subproblems of power, spectrum and RIS phase shift op-
timization. A graph-based power allocation method is presented
to transform the non-convex power allocation subproblem into a
tractable one and obtain the closed-form solutions. A worst-case
conditional value-at-risk (CVaR) approximation-based method is
developed to convert the RIS phase optimization subproblem into
a convex semidefinite programming (SDP) problem. We propose a
low-complexity learning-based alternating optimization approach
which alternately optimizes three subproblems to obtain a near-
optimal solution. Simulation results demonstrate that the pro-
posed approach outperforms other benchmark methods.

Key Terms: V2X communications, RIS, robust resource allo-
cation, outage probability constraint, uncertain channel.

I. INTRODUCTION

In recent years, vehicle-to-everything (V2X) communica-
tions, including vehicle-to-infrastructure (V2I) and vehicle-
to-vehicle (V2V) communications, have gained increasing
interest due to their potential to tackle traffic-related issues,
such as road safety and traffic efficiency, etc [1]. However,
the propagation quality of V2X communication links is often
degraded because of the rapidly varying channels caused
by the high mobility of vehicles and the complexity of the
urban communication environment, such as high buildings
blocking the channels [2]. To enhance the propagation qual-
ity, reconfigurable intelligent surface (RIS) is emerging as a
promising transmission technology that can reconfigure the
wireless channel as well as improve energy efficiency [3].
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Specifically, RIS is invented to reflect the signal from the base
station (BS) to a targeted user for enhancing received signal
quality or restrain the interference, thereby ensuring security
and privacy [4]. Compared with conventional active antennas
equipped with energy-inefficient radio frequency (RF) chains
and power amplifiers, RIS with passive reflective elements
are more cost-effective and energy-efficient [5]. Hence, these
advantages make RIS a potential technology to enhance the
performance of the vehicular wireless communication systems.

Resource allocation for RIS-aided wireless communication
networks has been extensively explored in many research
fields. However, there are still significant gaps in the research
on RIS-aided vehicular communications. In [6], a resource
allocation problem based on RIS-aided vehicle networks was
solved by jointly optimizing the power allocation, the spectrum
allocation and the RIS reflection coefficients. The authors in
[7] studied a RIS resource allocation problem, joint power
allocation of device-to-device (D2D) nodes and RIS passive
beam forming in RIS-based D2D communication network-
s. The work in [8] proposed a block coordinate descent
(BCD) method to solve a spectrum allocation problem in
RIS supported vehicle systems. However, none of the above
methods consider the channel uncertainties caused by the
limited channel feedback, partial channel state information
(CSI) acquisition and the Doppler effect [9]. Therefore, these
works failed to guarantee the outage probability constrain-
t, leading to the violation of the quality-of-service (QoS)
constraints for communication links. To guarantee the QoS
constraints, [10] developed a semidefinite relaxation (SDR)-
based BCD approach to research a joint optimization problem
in D2D networks where the CSI is imperfect. The work in [11]
proposed an alternate optimization (AO) method to resolve
the transmit power minimization problem where the chance
constraint is based on the statistical CSI error model. In [12],
the authors applied Bernstein-type inequality and SDR to
transform a minimum transmit power optimization problem
into a semidefinite programming (SDP) problem for RIS-
aided communications based on the statistical CSI error model.
However, these works assume that the CSI is based on a known
probability distribution model, such as the statistical error
model and the bounded error model, rather than an unknown
probability distribution model.

Against the above background, we research the robust
resource allocation for RIS-aided V2X communications, con-
sidering the CSI of the unknown distribution of the partial ve-
hicular channels. Then, a joint power allocation, spectrum al-
location and RIS phase shift optimization problem is designed
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Fig. 1. RIS-aided single cellular vehicle communications

to maximize the sum capacity of cellular user equipments
(CUEs) while guaranteeing the outage probability constraints
of vehicular user equipments (VUEs) and the unit-modulus
constraint of RIS. We decompose the considered problem into
three subproblems and develop a low-complexity learning-
based alternating optimization approach, which alternately
optimizes them to obtain a near-optimal solution.

II. SYSTEM MODEL

A. Network Model

As shown in Fig. 1, we consider an RIS-aided single cellular
vehicle network based on V2X communications, which con-
sists of one gNB, one RIS and some vehicles. We consider
a single-input single-output (SISO) uplink communication
network, where both the Next Generation NodeB (gNB) and
the vehicles are equipped with a single antenna. There are I
CUEs communicating via V2I links and L VUE pairs achiev-
ing V2V communication, denoted as I = {1, 2, · · · , I} and
L = {1, 2, · · · , L}, respectively. In mode-1, the orthogonal
resource blocks (RBs) are allocated to CUEs by the gNB.
Since CUEs utilize the uplink resources sparsely and VUEs
generally generate minor interference to gNB, the uplink
resources of CUEs can be reused by VUE pairs. The binary
variable zi,l is applied to represent the allocation of uplink
resources for CUE. If the spectrum of the ith CUE is reused
by the lth VUE, zi,l = 1. Otherwise, zi,l = 0. P c

i and P d
l

represent the transmit power of the ith CUE and the transmitter
of the lth VUE pair, respectively. The RIS consists of R
reflecting elements defined as R = {1, 2, · · · , R}, which can
adjust the channel by optimizing their phase shifts. The phase
shift matrix is represented by E = diag ([e1, · · · , eR]), where
er = ejφr and φr is the phase shift of the rth element.

The channel gain from the ith CUE to the gNB is modelled
as hi,b =

√
ωi,bh̃i,b=

√
λd

βi,b

i,b h̃i,b, where ωi,b denotes the
large-scale slow fading channel gain, h̃i,b is the small-scale
fast fading gain, λ is the pathloss at the distance of 1 metre, d
is the link distance in metres and β is the pathloss exponent.
Similarly, the definitions of the channel gain hi,r ∈ CR×1,
hr,b ∈ CR×1, hl,r ∈ CR×1, hr,l ∈ CR×1, hl as well as the
crosstalk channel gain hi,l and hl,b are similar to hi,b. Since
the large-scale fading components are generally influenced by
the position of vehicles and vary on a slow scale, gNB has
the ability to perfectly obtain the pathloss exponent and the
link distance of all links. However, for the small-scale fading,
we consider different assumptions for different channels. As

the gNB has sensing capability, the CSI can be accurately
obtained by the gNB for channels directly connected to the
gNB, i.e., h̃i,b and h̃l,b, as well as for cascaded channels whose
final destination is the gNB, i.e., h̃i,r, h̃l,r and h̃r,b. For the
channels whose destinations are vehicles, i.e., h̃l, h̃i,l and h̃r,l,
we assume that the gNB can only obtain the estimated channel
fading h̄ with error ĥ, due to the Doppler effect generated by
the high mobility of vehicles. We apply a first-order Gauss-
Markov process [13] to model the small-scale channel fading
of the vehicular links as

h̃ = κh̄+
√

1− κ2ĥ,

where ĥ ∼ CN (0, 1) is independent and identically distributed
(i.i.d.) and κ (0 < κ < 1) denotes the channel correlated
coefficient at two successive time intervals.

Herein, the received signal-to-interference-plus-noise ratio
(SINR) at the gNB and the receiver of the lth VUE can be
expressed as

γi =
P c
i h

B
i∑

l∈L
zi,lP d

l h
B
l + σ2

=
P c
i

∣∣∣hi,b + hH
r,bEhi,r

∣∣∣2∑
l∈L

zi,lP d
l

∣∣∣hl,b + hH
r,bEhl,r

∣∣∣2 + σ2

,

and

γl =
P d
l h

d
l∑

i∈I
zi,lP c

i h
d
i + σ2

=
P d
l

∣∣∣hl + hH
r,lEhl,r

∣∣∣2∑
i∈I

zi,lP c
i

∣∣∣hi,l + hH
r,lEhi,r

∣∣∣2 + σ2

,

respectively, where σ2 is the power of noise.

B. Problem Formulation

To guarantee the requirements of high-data rate mobile
services and ultra-reliable data transmission services, the sum
capacity of CUEs is maximized while satisfying the outage
probability requirement of VUEs due to the uncertain CSI
of the vehicle links. On this basis, the resource allocation
problem involves the joint optimization of the transmit power
P =

{
P c
i , P

d
l , ∀i, l

}
, the allocation of spectrum resources

Z = {zi,l, ∀i, l} and the RIS phase shift matrix E. Hence,
the problem is formulated as

max
{P,E,Z}

∑
i∈I

W log2(1 + γi) (1)

s.t. Pr{γl ≥ γth} ≥ 1− δ,∀l ∈ L, (1a)
|er| = 1, ∀r ∈ R, (1b)∑
l∈L

zi,l = 1, ∀i ∈ I,
∑
i∈I

zi,l = 1,∀l ∈ L, (1c)

zi,l ∈ {0, 1}, ∀i ∈ I, l ∈ L, (1d)
0≤P c

i ≤Pmax
i , ∀i∈I, 0≤P d

l ≤Pmax
l , ∀l∈L, (1e)

where W is the bandwidth of spectrum resources, γth is the
minimum SINR requirement for V2V communication, δ is
the maximum tolerable outage probability for V2V commu-
nication, Pmax

i and Pmax
l are the maximum transmit power

for CUEs and VUEs. More specifically, (1b) ensures the unit-
modulus constraint on the phase shift of each RIS reflecting



element. (1c) characterizes that the spectrum of one CUE can
only be reused by one VUE pair and one VUE can only reuse
the spectrum of one CUE. Because the variables are coupled
with each other and the variable zi,l is binary variable, the
resource allocation problem in (1) is a mixed-integer non-
convex problem. To solve this non-convex problem, a learning-
based alternating optimization approach is proposed.

III. LEARNING-BASED ALTERNATING OPTIMIZATION
APPROACH

In this section, we present a learning-based alternating
optimization approach (LAOA) to solve problem (1). Since
there are three variables P, E and Z which are coupled
with each other, it is difficult to find an efficient allocation
to optimize three variables and obtain the globally optimal
solution. In the following, we employ the AO approach to de-
compose problem (1) into three subproblems, i.e., the spectrum
allocation subproblem, the power allocation subproblem and
the phase shift optimization subproblem, and then alternately
optimize them while fixing the other variables.

A. Power Allocation Subproblem

For transforming the outage probability constraint in (1a),
we propose a learning method that applies a high probability
region (HPR) to represent the uncertain CSI of the vehicular
channels. In order to acquire the HPR, we should collect
multiple samples of the uncertain CSI and learn the uncertain
set, which must cover all samples with the probability 1− δ.
If the acquired power solution is feasible under the 1 − δ
content of uncertain samples, the outage probability constraint
must be satisfied. Inspired by this thought, when the spectrum
allocation Z and the phase shift matrix E are given, the
approximate form of the power allocation subproblem can be
formulated as

Ci,l = max
P

W log2

(
1 +

P c
i h

B
i

P d
l h

B
l + σ2

)
(2)

s.t. pd
l θ

d
l ≥ σ2,θd

l ∈ Hd
l , (2a)

0 ≤ P c
i ≤ Pmax

i , 0 ≤ P d
l ≤ Pmax

l , (2b)

where pd
l = [

Pd
l

γth
,−P c

i ], θ
d
l = [hd

l , h
d
i ]

T and Hd
l is the HPR.

When Hd
l cover all samples of uncertain CSI θd

l with the
probability 1− δ, the feasible solutions of (2) must satisfy

Pr{γl ≥ γth} ≥ Pr{θd
l ∈ Hd

l } ≥ 1− δ. (3)
Since the affine set can simplify the intractable problem,

the HPR is modeled as Hd
l =

{
θd
s

∣∣p̃d
l θ

d
l ≥ rl

}
, where p̃d

l =

[
P̃d

l

γth
,−P̃ c

i ] is a given initial feasible solution and rl is the
size of the HPR. For learning the size rl, M i.i.d. samples of
the uncertain CSI θd

l are collected as M={η1,η2, · · · ,ηM},
where ηm ∈ R2. Let k(ηm) = p̃d

l ηm be the map from the
random space R2 into R. Then, the values k(ηm) of all
samples in M can be computed and sorted in ascending
order k(1)(η) ≤ · · · ≤ k(M)(η). The (1 − δ)-quantile q1−δ

is introduced as
Pr{k(η) ≤ q1−δ} = 1− δ. (4)
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Fig. 2. Two cases in the feasible region of problem (2).

Hence, the size of the HPR can be learned as the upper
bound of (1 − δ)-quantile of k(η), which is considered as
rl = k⌈(1−δ)M⌉(η).

Based on the learned Hd
l , for satisfying the outage constraint

of V2V links, we need compute the minimum θd
l of (2a) via

the following optimization
min
θd
l

pd
l θ

d
l s.t. p̃d

l θ
d
l ≥ rl. (5)

Then, the dual problem of (5) is
max
yd
l

ydl rl s.t. ydl p̃
d
l ≤ pd

l , y
d
l ≥ 0. (6)

According to above transformation, after vector p̃d
l and pd

l

are decomposed into the scalar form, the outage constraint is
converted into the linear constraints as follows

ydl rl ≥ σ2, ydl ≥ 0, ydl P̃
d
l ≤ P d

l , y
d
l P̃

c
i ≥ P c

i . (7)
Then, by combining (2b) with (7), the power allocation
subproblem can be reformulated as

Ci,l =max
P

W log2

(
1 +

P c
i h

B
i

P d
l h

B
l + σ2

)
(8)

s.t. 0≤P c
i ≤min

{
ydl P̃

c
i , P

max
i

}
, ydl P̃

d
l ≤P d

l ≤Pmax
l , (8a)

ydl rl ≥ σ2, ydl ≥ 0. (8b)
Based on the constraints of (8), we can construct the feasible

region of problem (8) as shown in Fig. 2. According to
analysing the values of ydl P̃

c
i and Pmax

i , we can discuss the
power solution in following two cases.

1) Case 1: When ydl P̃
c
i ≤ Pmax

i , the feasible region
satisfies Case 1 in Fig. 2. From the objective function of
problem (8), we observe that the capacity increases mono-
tonically with P c

i when P d
l is fixed. On the contrary, the

capacity decreases monotonically with P d
l when P c

i is fixed.
Therefore, the optimal value of problem (8) must be located
in A1. When we substitute the coordinate of A1 (ydl P̃

c
i , y

d
l P̃

d
l )

into the objective function, we observe that the objective
function becomes the function of ydl and monotonically in-
creases with ydl . The feasible region of ydl can be obtained
as σ2

rl
≤ ydl ≤ min{Pmax

l

P̃d
l

,
Pmax

i

P̃ c
i

}, so the optimal value is

yd,∗l = min{Pmax
l

P̃d
l

,
Pmax

i

P̃ c
i

}.

2) Case 2: When ydl P̃
c
i ≥ Pmax

i , the feasible region
satisfies Case 2 in Fig. 2. Similarly, the optimal value of
problem (8) must be located in A2. Then, when we substitute
the coordinate of A2 into the objective function, we find the
objective function monotonically decreases with ydl and the



feasible region of ydl is max{σ2

rl
,
Pmax

i

P̃ c
i

} ≤ ydl ≤ Pmax
l

P̃d
l

. Hence,

the optimal value is yd,∗l = max{σ2

rl
,
Pmax

i

P̃ c
i

}.

To sum up, when we substitute yd,∗l into the coordinate of
A1 and A2, the closed-form solution of the power allocation
subproblem can be obtained as

Ci,l(P
c,∗
i , P d,∗

l )=



(
Pmax
l P̃ c

i

P̃ d
l

, Pmax
l ),if

σ2

rl
≤ Pmax

l

P̃ d
l

≤ Pmax
i

P̃ c
i

,

(Pmax
i ,

Pmax
i P̃ d

l

P̃ c
i

),if
σ2

rl
≤ Pmax

i

P̃ c
i

≤ Pmax
l

P̃ d
l

,

(Pmax
i ,

σ2P̃ d
l

rl
), if

Pmax
i

P̃ c
i

≤ σ2

rl
≤ Pmax

l

P̃ d
l

,

0, otherwise.

(9)

B. Phase Shift Optimization Subproblem
Given the variables P and Z, we optimize the phase shift

matrix E in this subsection. To facilitate the following opti-
mization, we first convert some channel parameters. Let e=
[e1, · · · , eR]T be the vector containing the diagonal elements
of matrix E and Di,r=diag(hi,r) be the matrix diagonalized
by vector. Hence, the V2I channel hB

i is reformulated as

hB
i =

∣∣hi,b + hH
r,bEhi,r

∣∣2 =
∣∣hi,b + hH

r,bDi,re
∣∣2

= [a, eH ][hi,b,h
H
r,bDj,r]

H [hi,b,h
H
r,bDi,r][a, e

H ]H (10)
= Tr

(
hi,Bh

H
i,BΦ

)
= Tr (Hi,BΦ) ,

where hi,B =[hi,b,h
H
r,bDj,r]

H ∈C(R+1)×1, Hi,B =hi,Bh
H
i,B ,

Φ = [a, eH ]H [a, eH ], a is an auxiliary variable and |a| = 1.
Likewise, the crosstalk channel hB

l is reformulated as
hB
l = Tr

(
hl,Bh

H
l,BΦ

)
= Tr (Hl,BΦ) , (11)

where hl,B = [hl,b,h
H
r,bDl,r]

H and Dl,r = diag(hl,r). Due
to the non-concavity of the objective function, we apply the
Successive Convex Approximation method to approximate the
objective function. Because the first Taylor-expansion of any
concave function at an point is its globally upper-bounded, for
a given point Φ(t), the objective function is approximated as
Ci,l=Wfi(Φ)−Wfl(Φ)≥Wfi(Φ)−Wfub

l (Φ)=Clb
l , (12)

wherefi(Φ) = log2
(
P d
l Tr (Hl,BΦ) + P c

i Tr (Hi,BΦ) + σ2
)
,

fl(Φ) = log2
(
P d
l Tr (Hl,BΦ) + σ2

)
and fub

l (Φ) =

fl(Φ
(t)) +

Pd
l Tr(Hl,B(Φ−Φ(t)))

(Pd
l Tr(Hl,BΦ(t))+σ2) ln 2

. By the above approxi-
mation, the objective function has been converted into the
concave function and the phase shift optimization subproblem
is reformulated as

max
Φ

Clb
l (13)

s.t. Pr

{
P d
l h

d
l

P c
i h

d
i + σ2

≥γth

}
≥ 1− δ, (13a)

Φ[r,r] = 1, r = 1, · · · , R+ 1. (13b)
Then, a useful lemma on the transformation outage proba-
bility constraint using the worst-case conditional value-at-risk
(CVaR) approximation is given as follows:

Lemma 1. Let f(x) ∈ C, f(x) ∈ Ck×1 and F(x) ∈ Hk be
the function with the variable x∈R, where H is a hermitian
matric. Suppose there exists a outage probability constraint
denoted as

Pr{f(x) + f(x)Hh+ hHF(x)h ≤ 0} ≥ 1− δ, (14)

where h ∈ Ck×1 is a random vector. Then, (14) can be
approximated as

α+
1

δ
Tr (ΩN) ≤ 0, α ∈ R,N ∈ H(k+1),N ≽ 0,

N−
[

F(x) 1
2
f(x)

1
2
f(x)H f(x)− α

]
≽ 0,

where α is an auxiliary variable, N is a matrix of auxiliary
variables and Ω is the second-order moment matrix of h.

Proof: Refer to Section II in [14].
Since the CVaR can approximate the chance constraint if

the function in the chance constraint is a quadratic function
of the random variables. To be compatible with Lemma 1, we
convert the V2V channel as follows
hd
l =

∣∣hl + hH
r,lEhl,r

∣∣2= ∣∣hl + hH
r,lDl,re

∣∣2=hH
l,dΦhl,d, (15)

where hl,d = [hl,h
H
r,lDl,r]

H ∈ C(R+1)×1. Similarly, hd
i =

hH
i,dΦhi,d, where hi,d=[hi,l,h

H
r,lDi,r]

H ∈C(R+1)×1. Hence,
the received SINR at the lth VUE can be converted into

P d
l h

d
l

P c
i h

d
i + σ2

≥γth ⇒ P d
l h

d
l −γthP

c
i h

d
i ≥γthσ

2 (16)

⇒
[
hH
l,d hH

i,d

][ P d
l Φ 0
0 −γthP

c
i Φ

]
︸ ︷︷ ︸

Ψ∈C2(R+1)

[
hl,d

hi,d

]
︸ ︷︷ ︸

hd∈C(2R+2)×1

≥γthσ
2,

which is a quadratic function of the uncertain channel hd.
In order to learning the probability distribution information,
the multiple samples of the uncertain CSI hd are collect-
ed as Md = {ηd

1 ,η
d
2 , · · · ,ηd

M}, where ηd
m ∈ C(2R+2)×1.

Thus, the mean vector and the covariance matrix of sam-
ples can be represented as η̄d = 1

M

∑M
m=1 η

d
m and Σd =

1
M

∑M
m=1 (η

d
m − η̄d)(η

d
m − η̄d)

H , respectively. The second-
order moment matrix of hd is represented as

Ωd =

[
Σd + η̄dη̄

H
d η̄d

η̄H
d 1

]
∈C2R+3. (17)

Based on Lemma 1 and the above analyses, problem (13) can
be reformulated as

max
Φ,N∈H2R+3,α∈R

Clb
l (18)

s.t. α+
1

δ
Tr (ΩdN)≤0,N≽0, N+∆≽0,Φ≽0, (18a)

Φ[r,r] = 1, r = 1, · · · , R+ 1, (18b)

where ∆ =

[
Ψ 0
0 α− γthσ

2

]
∈ H2R+3, the unit-modulus

constraint is converted into a tractable constraint in (18b).
Therefore, problem (18) is a convex SDP problem and can be
solved by CVX tools. The optimal solution Φ∗ to problem (18)
can be decomposed to obtain the optimal e∗ by the Gaussian
randomization method [15] if a = 1. If a = −1, obtaining the
inverse e∗ is equivalent to obtaining the optimal phase shifts.

C. Spectrum Allocation Subproblem

According to the above the power allocation and the phase
shift optimization approaches, we can obtain the power so-
lutions and the phase shift solutions based on all possible
spectrum reusing pairs. Then, the Hungarian algorithm can be
employed to obtain the optimal spectrum allocation solution.
We assume that the number of CUEs is equal to the number of



VUEs, i.e., I = L. Hence, the spectrum allocation subproblem
is formulated as

max
Z

∑
i∈I

∑
l∈L

zi,lCi,l s.t. (1c), (1d), (19)

which is a bipartite matching problem in graph and can be
resolved by the Hungarian algorithm.

D. Computational Complexity

Algorithm 1 Learning-based Alternating Optimization
(LAOA) Algorithm

1: Initialize P(0) and E(0), and set the iterative index t=0.
2: for i = 1, · · · , I do
3: for l = 1, · · · , L do
4: repeat
5: Solve problem (9) for given E(t) and represent the

optimal solution as P(t+1);
6: Solve problem (18) for given P(t+1) and represent

the optimal solution as E(t+1);
7: t = t+ 1;
8: until The change of the objective value is below a

threshold ς = 10−3;
9: The optimal capacity of the possible spectrum reusing

pair Ci,l is obtained;
10: end for
11: end for
12: Apply Hungarian algorithm to compute the optimal spec-

trum reusing pattern Z∗ based on {Ci,l} and return the
optimal resource allocation {P∗,E∗,Z∗}.

In this subsection, we summarize the learning-
based alternating optimization algorithm for RIS-aided
V2X communications in Algorithm 1 and discuss its
computational complexity. Since we can obtain the closed-
form solution of the power allocation subproblem that
only needs some multiplication operations, its complexity
is O1 = O(1). The complexity of problem (18) is O2 =

O
(
(6R+ 9)

1/2
u
(
u2+u(R+ 2+2v2+s2)+R+ 2+2v3+s3

))
,

where u = s2 + v2 + 1, v = 2R + 3 and s = R + 1. The
complexity of the Hungarian algorithm is O(I3). Therefore,
the complexity of the resource allocation problem is
O
(
I3 + I2tmax (O1 +O2)

)
, where tmax represents as the

maximum number of iterations.

IV. SIMULATION RESULTS

This section provides simulation results to evaluate the
performance of our proposed approach. Fig.1 shows a RIS-
aided vehicular network, where the coordinates of gNB and
RIS are set as (0m, 0m, 20m) and (80m, 0m, 20m), respec-
tively. There are 4 CUEs uniformly distributed on a circle
centred at (120m, 0m, 0m) with a radius of 20m. Similarly,
there are 4 VUE pairs randomly generated in a circle centred
at (140m, 130m, 0m) with a radius of 70m. The pathloss
exponents of gNB-vehicle, RIS-vehicle and gNB-RIS links
are set as 4, 2 and 2.2, respectively. The small scale fading
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Fig. 3. CUE throughput versus the maximum CUE transmit power.
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Fig. 4. CUE throughput versus the minimum VUE SINR requirement.

is considered as Rayleigh fading distribution. The channel
correlation coefficient κ is the same as in [9]. In addition,
the total number of RIS reflecting elements is R = 20. The
other parameters are set as follows: Pmax

i =Pmax
l =30dBm,

W=10MHz, σ2 = −114dBm, δ = 0.01, γth = 1 and
M = 1000. For comparison, we simulate several baselines
including a non-robust resource allocation method denoted as
NRRL, a random RIS phase shifts method denoted as RRAL,
a random spectrum allocation method denoted as RSAL and
a method without RIS assistance denoted as WRAL.

Fig. 3 shows the impact of the maximum transmit power
Pmax
i on CUE throughput. It can be observed that when

Pmax
i = 0dBm, CUE throughput is very small. As Pmax

i is
increased, CUE throughput starts to increase. When Pmax

i ≥
40dBm, the systems cannot allocate larger transmit power to
CUE so that CUE throughput remains stable. This is because
larger CUE transmit power will cause more interference to
VUEs and can lead to the violation of the VUE QoS require-
ment. We also observed that CUE throughput of RSAL and
NRRA is smaller than that of our proposed LAOA. This is
because the spectrum allocation of RSAL is not optimal and
NRRA can result in some samples of the uncertain channels
violating the outage constraint. Furthermore, the performance
of WRAL is the lowest and the performance of RRAL is
slightly better than that of WRAL, which highlights the
significance of RIS phase shifts optimization because the phase
shift optimization solution of RRAL is not optimal and WRAL
does not have RIS-assisted vehicular communication.

Fig. 4 compares CUE throughput versus the minimum VUE
SINR requirement under different schemes. It can be seen
that CUE throughput reduces as the minimum VUE SINR
requirement γth increases. The reason is that a higher VUE
SINR requirement results in the system allocating larger VUE
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transmit power to satisfy the outage probability constraint.
However, the increase of VUE transmit power will cause more
interference to CUE, which reduces CUE throughput. When
γth ≥ 8, CUE throughput decreases to 0. The reason is that the
system cannot allocate larger VUE transmit power due to the
constraint of the maximum VUE transmit power. Therefore,
the minimum VUE SINR requirement is no longer satisfied
and the resource allocation problem becomes infeasible.

In Fig. 5, we illustrate CUE throughput versus the number
of RIS reflecting elements. We find that the curves of all RIS-
aided approaches rises with R, with the exception of WRAL’s
curve. The reason is that more RIS reflecting elements can
form a larger reflective area and reflect more signal power,
which leads to larger power gain. The curve of WRAL remains
unchanged because WRAL considers the resource allocation
problem for V2X communication without RIS support.

Fig. 6 plots CUE throughput versus the distance between
gNB and RIS, where the variation of the distance depends
on the variation of the RIS coordinate xRIS . The distance
between gNB and the centre of CUEs is set to approximately
130m. We observe that CUE throughput of NRRL first de-
creases and then starts to increase at 70m as the distance
between gNB and RIS increases. This phenomenon can be
explained in the following way, where the small scale fading
is ignored for simplicity. Then, the large scale fading of
the combined gNB-RIS-CUE channel can be formulated as
√
ωi,b =

√
λ(di,b)

4
+

√
λ2(di,r)

2
(dr,b)

2.2, where di,b ≈
di,r + dr,b. Thus, when di,b = 2di,r = 2dr,b, the combined
channel gain reaches the minimum value. Moreover, the CUE
throughput of LAOA, RSAL and RRAL first decreases and
then remains stable. The reason is that these methods all
consider CSI uncertainty, which hinders the improvement of
system performance as the distance grows.

V. CONCLUSIONS

In this paper, we investigated the issue of robust resource
allocation in RIS-aided V2X communications, taking into
account the uncertain partial vehicle channel CSI due to the
Doppler effect. The sum capacity of CUEs maximization
problem was formulated subject to the outage probability
constraints of VUEs and RIS phase shifts. We presented a
learning-based alternating optimization approach, which de-
composed the problem into three subproblems to be iteratively
optimized. Simulation results demonstrated that the proposed
approach outperformed other benchmark methods, especially
when compared to a vehicular network without RIS assistance.
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